TY - JOUR
T1 - Electronic structure and lattice dynamics of Ba2CuTeO6single crystals
AU - Chung, Yun Chen
AU - Karna, Sunil K.
AU - Chou, Fan Cheng
AU - Liu, Hsiang Lin
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2020.
PY - 2020/5/27
Y1 - 2020/5/27
N2 - The electronic structure and lattice dynamics of Ba2CuTeO6single crystals were investigated through spectroscopic ellipsometry and Raman scattering measurements. The room-temperature optical absorption spectrum of Ba2CuTeO6presented a direct optical band gap at approximately 1.04 eV and exhibited four bands at approximately 1.45, 3.43, 4.65, and 5.79 eV. The optical absorption band at 1.45 eV was attributed to on-site Cu2+d-d transition. The other bands were attributed to charge-transfer transitions between the O 2p and Cu 3d or Te 5p states. The room-temperature Raman scattering spectrum of Ba2CuTeO6exhibited 16 phonon modes at approximately 85, 97, 104, 119, 160, 194, 380, 396, 404, 409, 492, 568, 574, 606, 679, and 751 cm-1. When the temperature decreased to less than 287 K, which is the temperature at which structural phase transition occurs from the monoclinic phase to the triclinic phase, additional phonon modes appeared at approximately 124, 128, 152, and 601 cm-1. On further cooling to lower than 75 and 15 K, which are the temperatures at which short- and long-range antiferromagnetic phase transitions occur, respectively, the phonon modes at approximately 97, 104, 124, 128, 152, 160, 194, 380, 396, 409, 568, 574, 606, and 679 cm-1exhibited softening, which indicates a coupling between the magnetic and lattice degrees of freedom. The stretching vibration of CuO6octahedra located at 679 cm-1had the largest spin-phonon coupling constant (1.67 mRy Å-2).
AB - The electronic structure and lattice dynamics of Ba2CuTeO6single crystals were investigated through spectroscopic ellipsometry and Raman scattering measurements. The room-temperature optical absorption spectrum of Ba2CuTeO6presented a direct optical band gap at approximately 1.04 eV and exhibited four bands at approximately 1.45, 3.43, 4.65, and 5.79 eV. The optical absorption band at 1.45 eV was attributed to on-site Cu2+d-d transition. The other bands were attributed to charge-transfer transitions between the O 2p and Cu 3d or Te 5p states. The room-temperature Raman scattering spectrum of Ba2CuTeO6exhibited 16 phonon modes at approximately 85, 97, 104, 119, 160, 194, 380, 396, 404, 409, 492, 568, 574, 606, 679, and 751 cm-1. When the temperature decreased to less than 287 K, which is the temperature at which structural phase transition occurs from the monoclinic phase to the triclinic phase, additional phonon modes appeared at approximately 124, 128, 152, and 601 cm-1. On further cooling to lower than 75 and 15 K, which are the temperatures at which short- and long-range antiferromagnetic phase transitions occur, respectively, the phonon modes at approximately 97, 104, 124, 128, 152, 160, 194, 380, 396, 409, 568, 574, 606, and 679 cm-1exhibited softening, which indicates a coupling between the magnetic and lattice degrees of freedom. The stretching vibration of CuO6octahedra located at 679 cm-1had the largest spin-phonon coupling constant (1.67 mRy Å-2).
UR - http://www.scopus.com/inward/record.url?scp=85085608335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085608335&partnerID=8YFLogxK
U2 - 10.1039/d0ra02314k
DO - 10.1039/d0ra02314k
M3 - Article
AN - SCOPUS:85085608335
SN - 2046-2069
VL - 10
SP - 20067
EP - 20072
JO - RSC Advances
JF - RSC Advances
IS - 34
ER -