Elastic coupling between layers in two-dimensional materials

Yang Gao, Suenne Kim, Si Zhou, Hsiang Chih Chiu, Daniel Nélias, Claire Berger, Walt De Heer, Laura Polloni, Roman Sordan, Angelo Bongiorno*, Elisa Riedo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

79 Citations (Scopus)

Abstract

Two-dimensional materials, such as graphene and MoS 2, are films of a few atomic layers in thickness with strong in-plane bonds and weak interactions between the layers. The in-plane elasticity has been widely studied in bending experiments where a suspended film is deformed substantially; however, little is known about the films' elastic modulus perpendicular to the planes, as the measurement of the out-of-plane elasticity of supported 2D films requires indentation depths smaller than the films' interlayer distance. Here, we report on sub-ångström-resolution indentation measurements of the perpendicular-to-the-plane elasticity of 2D materials. Our indentation data, combined with semi-analytical models and density functional theory, are then used to study the perpendicular elasticity of few-layer-thick graphene and graphene oxide films. We find that the perpendicular Young's modulus of graphene oxide films reaches a maximum when one complete water layer is intercalated between the graphitic planes. This non-destructive methodology can map interlayer coupling and intercalation in 2D films.

Original languageEnglish
Pages (from-to)714-720
Number of pages7
JournalNature Materials
Volume14
Issue number7
DOIs
Publication statusPublished - 2015 Jul 24

ASJC Scopus subject areas

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Elastic coupling between layers in two-dimensional materials'. Together they form a unique fingerprint.

Cite this