Eigenvalue estimates using the Kolmogorov-Sinai Entropy

Shih Feng Shieh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The scope of this paper is twofold. First, we use the Kolmogorov-Sinai Entropy to estimate lower bounds for dominant eigenvalues of nonnegative matrices. The lower bound is better than the Rayleigh quotient. Second, we use this estimate to give a nontrivial lower bound for the gaps of dominant eigenvalues of A and A + V.

Original languageEnglish
Pages (from-to)2036-2048
Number of pages13
JournalEntropy
Volume13
Issue number12
DOIs
Publication statusPublished - 2011 Dec

Keywords

  • Eigenvalue estimates
  • Kolmogorov-Sinai entropy
  • Parry's theorem

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Eigenvalue estimates using the Kolmogorov-Sinai Entropy'. Together they form a unique fingerprint.

Cite this