Eigenvalue estimates using the Kolmogorov-Sinai Entropy

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The scope of this paper is twofold. First, we use the Kolmogorov-Sinai Entropy to estimate lower bounds for dominant eigenvalues of nonnegative matrices. The lower bound is better than the Rayleigh quotient. Second, we use this estimate to give a nontrivial lower bound for the gaps of dominant eigenvalues of A and A + V.

Original languageEnglish
Pages (from-to)2036-2048
Number of pages13
JournalEntropy
Volume13
Issue number12
DOIs
Publication statusPublished - 2011 Dec

Fingerprint

eigenvalues
entropy
quotients
estimates
matrices

Keywords

  • Eigenvalue estimates
  • Kolmogorov-Sinai entropy
  • Parry's theorem

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Eigenvalue estimates using the Kolmogorov-Sinai Entropy. / Shieh, Shih Feng.

In: Entropy, Vol. 13, No. 12, 12.2011, p. 2036-2048.

Research output: Contribution to journalArticle

@article{57edaa7cec93476fa50afb2dab0f022b,
title = "Eigenvalue estimates using the Kolmogorov-Sinai Entropy",
abstract = "The scope of this paper is twofold. First, we use the Kolmogorov-Sinai Entropy to estimate lower bounds for dominant eigenvalues of nonnegative matrices. The lower bound is better than the Rayleigh quotient. Second, we use this estimate to give a nontrivial lower bound for the gaps of dominant eigenvalues of A and A + V.",
keywords = "Eigenvalue estimates, Kolmogorov-Sinai entropy, Parry's theorem",
author = "Shieh, {Shih Feng}",
year = "2011",
month = "12",
doi = "10.3390/e13122036",
language = "English",
volume = "13",
pages = "2036--2048",
journal = "Entropy",
issn = "1099-4300",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "12",

}

TY - JOUR

T1 - Eigenvalue estimates using the Kolmogorov-Sinai Entropy

AU - Shieh, Shih Feng

PY - 2011/12

Y1 - 2011/12

N2 - The scope of this paper is twofold. First, we use the Kolmogorov-Sinai Entropy to estimate lower bounds for dominant eigenvalues of nonnegative matrices. The lower bound is better than the Rayleigh quotient. Second, we use this estimate to give a nontrivial lower bound for the gaps of dominant eigenvalues of A and A + V.

AB - The scope of this paper is twofold. First, we use the Kolmogorov-Sinai Entropy to estimate lower bounds for dominant eigenvalues of nonnegative matrices. The lower bound is better than the Rayleigh quotient. Second, we use this estimate to give a nontrivial lower bound for the gaps of dominant eigenvalues of A and A + V.

KW - Eigenvalue estimates

KW - Kolmogorov-Sinai entropy

KW - Parry's theorem

UR - http://www.scopus.com/inward/record.url?scp=84855387083&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84855387083&partnerID=8YFLogxK

U2 - 10.3390/e13122036

DO - 10.3390/e13122036

M3 - Article

AN - SCOPUS:84855387083

VL - 13

SP - 2036

EP - 2048

JO - Entropy

JF - Entropy

SN - 1099-4300

IS - 12

ER -