Eigenvalue estimates using the Kolmogorov-Sinai Entropy

Research output: Contribution to journalArticle

2 Citations (Scopus)


The scope of this paper is twofold. First, we use the Kolmogorov-Sinai Entropy to estimate lower bounds for dominant eigenvalues of nonnegative matrices. The lower bound is better than the Rayleigh quotient. Second, we use this estimate to give a nontrivial lower bound for the gaps of dominant eigenvalues of A and A + V.

Original languageEnglish
Pages (from-to)2036-2048
Number of pages13
Issue number12
Publication statusPublished - 2011 Dec


  • Eigenvalue estimates
  • Kolmogorov-Sinai entropy
  • Parry's theorem

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Eigenvalue estimates using the Kolmogorov-Sinai Entropy'. Together they form a unique fingerprint.

  • Cite this