Efficient microspark erosion-assisted machining of a monocrystalline microdiamond stylus using a heat-avoidance path

Shun Tong Chen*, Chien Chih Chen, Sheng Yu Shih

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Monocrystalline diamond possesses covalent bonding making diamond extremely hard and difficult to machine. In this study, a microdiamond stylus typically used in measuring surface roughness is machined to exemplify the proposed ‘microspark erosion-assisted machining with heat-avoidance path’ technique. Based on the high thermal conductivity and weak electrical conductivity of boron-doped monocrystalline diamond, high-frequency pulsed discharge plasma is employed to efficiently perform microspark erosion machining on an extremely hard monocrystalline diamond blank. It was found that the pulse-on time and servo voltage respectively affect erosion plasma length and the erosion gap during diamond machining. Also, the safety distance and safety height of the erosion path dominate heat transfer to filler metal. These factors all affect the firmness of the brazed diamond blank on the substrate. Three mechanisms for removing carbon atoms from the diamond blank surface were observed. They are vaporization, melting, and graphitization of carbon atoms. This graphitized carbon atoms have weak electrical conductivity, which is conducive to inducing the wire-electrode to generate a greater electric field and secondary discharging, facilitating removal of additional carbon atoms. Experimental results indicate that a microdiamond stylus prototype with a tip of 10 μm can be safely formed using a ‘microspark erosion-assisted machining with heat-avoidance path’ technique, creating 93.7% repeatability of the minimum residual stylus diameter. The tangential micro-grinding facilitates the stylus tip to receive grinding from the grinding wheel's maximum tangential speed and create the precision microdiamond stylus with 1 μm in tip-radius. The applied microspark erosion-assisted machining had a diamond material removal rate that was 54% more efficient than conventional grinding of a commercial microdiamond stylus. The formed microdiamond stylus was inspected by Raman spectroscopy and verified by the surface roughness standard gauge to be up to industry standards.

Original languageEnglish
Pages (from-to)426-436
Number of pages11
JournalPrecision Engineering
Volume72
DOIs
Publication statusPublished - 2021 Nov

Keywords

  • Heat-avoidance path
  • Microdiamond stylus
  • Microspark erosion-assisted machining
  • Tangential micro-grinding

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Efficient microspark erosion-assisted machining of a monocrystalline microdiamond stylus using a heat-avoidance path'. Together they form a unique fingerprint.

Cite this