TY - JOUR
T1 - Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage
T2 - A double-blind randomized trial
AU - Chen, Hou Yu
AU - Chen, Yung Chih
AU - Tung, Kang
AU - Chao, Hsiao Han
AU - Wang, Ho Seng
N1 - Publisher Copyright:
Copyright © 2019 the American Physiological Society
PY - 2019
Y1 - 2019
N2 - The present study aims to investigate effects of caffeine ingestion and sex difference on muscle performance, delayed-onset muscle soreness (DOMS), and various biomarkers under exercise-induced muscle damage (EIMD). Twenty (10 male and 10 female) healthy elite college athletes were recruited. Participants ingested either caffeine (6 mg/kg) or a placebo in a randomized, double-blind, and counterbalanced fashion at 24 and 48 h following EIMD. Muscle performance, DOMS, and blood samples were taken an hour before and an hour after supplementation. Caffeine ingestion restored impaired maximal voluntary isometric contractions (MVIC: 10.2%; MVICpost: 7.2%, both P < 0.05) during EIMD across both sexes. Following caffeine ingestion during MVIC, while affected by EIMD, an interaction was found in DOMS and serum K+ (both P < 0.05), with males showing greater attenuation (21.5 and 16.9%, respectively) compared with females (4.6 and 1.3%, respectively). DOMS demonstrated an inverse correlation with MVIC after caffeine ingestion both overall and among male athletes (r = -0.34 and -0.54, respectively; P < 0.05) but not among female athletes (r = -0.11; P > 0.05) under EIMD. In addition, caffeine ingestion increased postexercise serum glucose and lactate concentrations across both sexes (both P < 0.05). This is the first study to show that male athletes, compared with female athletes, experience a greater reduction in DOMS during enhanced MVIC when caffeine was consumed, suggesting men might receive greater ergogenic effects from caffeine when affected by EIMD. Furthermore, caffeine ingestion was able to restore impaired muscle power among elite collegiate athletes across both sexes. NEW & NOTEWORTHY Exercise-induced muscle damage (EIMD) reduces anaerobic/aerobic performance and increases delayed-onset muscle soreness (DOMS) during exercise. We show that acute caffeine supplementation at a dosage of 6 mg/kg seems to facilitate recovery of anaerobic muscle power and attenuate DOMS after EIMD across both sexes. Furthermore, male athletes, compared with female athletes, when caffeine was prescribed, experience a greater reduction in DOMS with better restoration of impaired maximal voluntary isometric contractions. This suggests that male athletes might benefit from the ergogenic effect of acute caffeine supplementation after the onset of EIMD.
AB - The present study aims to investigate effects of caffeine ingestion and sex difference on muscle performance, delayed-onset muscle soreness (DOMS), and various biomarkers under exercise-induced muscle damage (EIMD). Twenty (10 male and 10 female) healthy elite college athletes were recruited. Participants ingested either caffeine (6 mg/kg) or a placebo in a randomized, double-blind, and counterbalanced fashion at 24 and 48 h following EIMD. Muscle performance, DOMS, and blood samples were taken an hour before and an hour after supplementation. Caffeine ingestion restored impaired maximal voluntary isometric contractions (MVIC: 10.2%; MVICpost: 7.2%, both P < 0.05) during EIMD across both sexes. Following caffeine ingestion during MVIC, while affected by EIMD, an interaction was found in DOMS and serum K+ (both P < 0.05), with males showing greater attenuation (21.5 and 16.9%, respectively) compared with females (4.6 and 1.3%, respectively). DOMS demonstrated an inverse correlation with MVIC after caffeine ingestion both overall and among male athletes (r = -0.34 and -0.54, respectively; P < 0.05) but not among female athletes (r = -0.11; P > 0.05) under EIMD. In addition, caffeine ingestion increased postexercise serum glucose and lactate concentrations across both sexes (both P < 0.05). This is the first study to show that male athletes, compared with female athletes, experience a greater reduction in DOMS during enhanced MVIC when caffeine was consumed, suggesting men might receive greater ergogenic effects from caffeine when affected by EIMD. Furthermore, caffeine ingestion was able to restore impaired muscle power among elite collegiate athletes across both sexes. NEW & NOTEWORTHY Exercise-induced muscle damage (EIMD) reduces anaerobic/aerobic performance and increases delayed-onset muscle soreness (DOMS) during exercise. We show that acute caffeine supplementation at a dosage of 6 mg/kg seems to facilitate recovery of anaerobic muscle power and attenuate DOMS after EIMD across both sexes. Furthermore, male athletes, compared with female athletes, when caffeine was prescribed, experience a greater reduction in DOMS with better restoration of impaired maximal voluntary isometric contractions. This suggests that male athletes might benefit from the ergogenic effect of acute caffeine supplementation after the onset of EIMD.
KW - Adenosine receptor
KW - Creatine kinase
KW - DOMS
KW - Ergogenic
KW - MVIC
UR - http://www.scopus.com/inward/record.url?scp=85072234828&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072234828&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.01108.2018
DO - 10.1152/japplphysiol.01108.2018
M3 - Article
C2 - 31219772
AN - SCOPUS:85072234828
SN - 8750-7587
VL - 127
SP - 798
EP - 805
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 3
ER -