Abstract
This study investigated the effects of temperature and body bias on drain current flicker noise (1/f) in 40-nm nMOSFETs. The 1/f noise is attributable to the charge number fluctuation correlating with the mobility fluctuation. At 300 K, as the depletion width was decreased, 1/f noise decreased with the body bias from − 0.5 to + 0.5 V in the weak inversion; conversely, 1/f noise was independent of the body bias because of the neglected depletion charge capacitance in the strong inversion. When the temperature was below 150 K, 1/f noise increased when the drain voltage was low because of the Fermi level toward the band edge, which has a higher trap density and corresponds to the inverse square of the subthreshold swing. However, when the drain voltage was high, 1/f noise was dominated by the mobility fluctuation because a wider strong inversion region at 150 K resulted in a lower 1/f noise and insignificant body effect. The analysis of this behavior in 40-nm devices may assist in determining the optimal device fabrication methods and circuit design.
Original language | English |
---|---|
Pages (from-to) | 267-271 |
Number of pages | 5 |
Journal | Microelectronics Reliability |
Volume | 78 |
DOIs | |
Publication status | Published - 2017 Nov |
Keywords
- Body effect
- Flicker noise
- Temperature effect
- nMOSFETs
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Safety, Risk, Reliability and Quality
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering