TY - GEN
T1 - Early detection of vacant parking spaces using dashcam videos
AU - Wu, Ming Che
AU - Yeh, Mei Chen
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019
Y1 - 2019
N2 - A major problem in metropolitan areas is finding parking spaces. Existing parking guidance systems often adopt fixed sensors or cameras that cannot provide information from the driver's point of view. Motivated by the advent of dashboard cameras (dashcams), we develop neural-network-based methods for detecting vacant parking spaces in videos recorded by a dashcam. Detecting vacant parking spaces in dashcam videos enables early detection of spaces. Different from conventional object detection methods, we leverage the monotonicity of the detection confidence with respect to the distance away of the approaching target parking space and propose a new loss function, which can not only yield improved detection results but also enable early detection. To evaluate our detection method, we create a new large dataset containing 5,800 dashcam videos captured from 22 indoor and outdoor parking lots. To the best of our knowledge, this is the first and largest driver's view video dataset that supports parking space detection and provides parking space occupancy annotations.
AB - A major problem in metropolitan areas is finding parking spaces. Existing parking guidance systems often adopt fixed sensors or cameras that cannot provide information from the driver's point of view. Motivated by the advent of dashboard cameras (dashcams), we develop neural-network-based methods for detecting vacant parking spaces in videos recorded by a dashcam. Detecting vacant parking spaces in dashcam videos enables early detection of spaces. Different from conventional object detection methods, we leverage the monotonicity of the detection confidence with respect to the distance away of the approaching target parking space and propose a new loss function, which can not only yield improved detection results but also enable early detection. To evaluate our detection method, we create a new large dataset containing 5,800 dashcam videos captured from 22 indoor and outdoor parking lots. To the best of our knowledge, this is the first and largest driver's view video dataset that supports parking space detection and provides parking space occupancy annotations.
UR - http://www.scopus.com/inward/record.url?scp=85089578992&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089578992&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85089578992
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 9613
EP - 9618
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI Press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -