Distinct effects of the two strong El Niño events in 2015–2016 and 1997–1998 on the western north Pacific monsoon and tropical cyclone activity: Role of subtropical eastern north pacific warm SSTA

Yi Kai Wu, Chi Cherng Hong, Cheng Ta Chen

Research output: Contribution to journalArticle

5 Citations (Scopus)


Western North Pacific (WNP) summer monsoon and tropical cyclone (TC) activity are supposed to be declined during a strong El Ni~no decaying summer. The 2015–2016 event, which had a Ni~no 3.4 sea surface temperature (SSTA) similar to the 1997–1998 event, was classified as a strong El Ni~no. However, WNP summer monsoon and TC activity were normal or even stronger than the climatological mean during the decaying summer. This study addressed why the 2015–2016 El Ni~no event exerted distinct effects on the WNP’s climate compared with the 1997–1998 event. The major difference in oceanic conditions between the two events is that a southwest-northeast-tilted subtropical warm SSTA in the eastern North Pacific associated with a pronounced westerly anomaly in the subtropical North Pacific was observed in 2015–2016. Singular value decomposition (SVD) analysis of the covariance of the SSTA and low-level wind indicated that second mode, resembling the Pacific meridional mode (PMM), accounted for the subtropical warm SSTA in the eastern North Pacific. Conversely, the contribution of leading mode (i.e., El Ni~no SSTA) was insignificant. Observational analysis indicated that the PMM-associated SSTA is significantly correlated with a large-scale low-level cyclonic circulation anomaly in the WNP during the El Ni~no decaying spring to summer, which may have an effect on offsetting the El Ni~no-induced anticyclone in the WNP and therefore returns WNP summer monsoon and TC activity to normal. The PMM-SST correlated with cyclonic circulation anomaly was further enhanced by an active phase of intraseasonal oscillation. The possible effect of PMMassociated SST on the summer monsoon and TC activity was further supported by numerical experiments.

Original languageEnglish
Pages (from-to)3603-3618
Number of pages16
JournalJournal of Geophysical Research: Oceans
Issue number5
Publication statusPublished - 2018 Jan 1
Externally publishedYes


ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this