Differential dynamics of hepatic protein expressions with long-term cultivated hepatitis C virus infection

Peiju Tsai, Tze Yu Lin, Shiang Lin Cheng, Hung Yu Sun, Sung Fang Chen*, Kung Chia Young*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Background: The liver maintains blood chemical homeostasis by active uptake and secretion through endocytosis, exocytosis, and intracellular trafficking between the plasma and intracellular membranes. Hepatitis C virus (HCV) infection affects the host membrane architecture and might thus impair the regulation of the cellular transportation machinery. Additionally, the hepatic expressions of differential protein dynamics with long-term HCV infection remain fully recover. Methods: In this study, comparative proteomic analysis was performed in HCV-infected and mock-control Huh7 cells according to the viral dynamics of exponential, plateau, declined, and silencing phases at the acute stage, and the chronic stage. The proteins with <0.8-fold and ≥1.25-fold changes in expression were analyzed using functional pathway clustering prediction. Results: The combined experimental repetitions identified full-spectrum cellular proteins in each of 5 sample sets from acute exponential, plateau, declined, and silencing phases, and the chronic stage. The clustering results revealed that HCV infection might differentiate regulatory pathways involving extracellular exosome, cadherin, melanosome, and RNA binding. Overall host proteins in HCV-infected cells exhibited kinetic pattern 1, in which cellular expression was downregulated from the acute exponential to plateau phases, reached a nadir, and was then elevated at the chronic stage. The proteins involved in the membrane-budding pathway exhibited kinetic pattern 2, in which their expressions were distinctly downregulated at the chronic stage. Conclusion: The current comparative proteomics revealed the differential regulatory effects of HCV infection on host intracellular transport functional pathways, which might contribute to the pathogenic mechanisms of HCV in hepatocytes that sustain long-term infection.

Original languageEnglish
Pages (from-to)715-723
Number of pages9
JournalJournal of Microbiology, Immunology and Infection
Issue number5
Publication statusPublished - 2020 Oct


  • Acute and chronic infections
  • Comparative proteomics
  • Functional pathway clustering
  • Hepatitis C virus
  • Intracellular trafficking

ASJC Scopus subject areas

  • Immunology and Allergy
  • General Immunology and Microbiology
  • Microbiology (medical)
  • Infectious Diseases


Dive into the research topics of 'Differential dynamics of hepatic protein expressions with long-term cultivated hepatitis C virus infection'. Together they form a unique fingerprint.

Cite this