Development of micromachined preconcentrators and gas chromatographic separation columns by an electroless gold plating technology

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s-1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2 > 0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s-1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH) <1.5 s); preconcentration factors for both VOCs are >7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47-184 s).

Original languageEnglish
Article number035012
JournalJournal of Micromechanics and Microengineering
Volume27
Issue number3
DOIs
Publication statusPublished - 2017 Feb 8

Fingerprint

Gold plating
Electroless plating
Gold
Gases
Volatile Organic Compounds
Toluene
Xylene
Heating rate
Volatile organic compounds
Heating
Photomasks
Thermal desorption
Silicon
Polydimethylsiloxane
Acetone
Benzene
Microchannels
Adsorbents
Seed
Sodium

Keywords

  • electroless gold plating
  • micro gas chromatograph
  • microheater
  • micromachined gas chromatographic separation column
  • micromachined preconcentrator

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Cite this

@article{da7e0bea3e974955a3687653cce05b97,
title = "Development of micromachined preconcentrators and gas chromatographic separation columns by an electroless gold plating technology",
abstract = "In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s-1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2 > 0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s-1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH) <1.5 s); preconcentration factors for both VOCs are >7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47-184 s).",
keywords = "electroless gold plating, micro gas chromatograph, microheater, micromachined gas chromatographic separation column, micromachined preconcentrator",
author = "Kuo, {C. Y.} and Chen, {P. S.} and Chen, {H. T.} and Lu, {C. J.} and Tian, {W. C.}",
year = "2017",
month = "2",
day = "8",
doi = "10.1088/1361-6439/aa5aa3",
language = "English",
volume = "27",
journal = "Journal of Micromechanics and Microengineering",
issn = "0960-1317",
publisher = "IOP Publishing Ltd.",
number = "3",

}

TY - JOUR

T1 - Development of micromachined preconcentrators and gas chromatographic separation columns by an electroless gold plating technology

AU - Kuo, C. Y.

AU - Chen, P. S.

AU - Chen, H. T.

AU - Lu, C. J.

AU - Tian, W. C.

PY - 2017/2/8

Y1 - 2017/2/8

N2 - In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s-1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2 > 0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s-1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH) <1.5 s); preconcentration factors for both VOCs are >7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47-184 s).

AB - In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s-1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2 > 0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s-1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH) <1.5 s); preconcentration factors for both VOCs are >7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47-184 s).

KW - electroless gold plating

KW - micro gas chromatograph

KW - microheater

KW - micromachined gas chromatographic separation column

KW - micromachined preconcentrator

UR - http://www.scopus.com/inward/record.url?scp=85016051989&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85016051989&partnerID=8YFLogxK

U2 - 10.1088/1361-6439/aa5aa3

DO - 10.1088/1361-6439/aa5aa3

M3 - Article

VL - 27

JO - Journal of Micromechanics and Microengineering

JF - Journal of Micromechanics and Microengineering

SN - 0960-1317

IS - 3

M1 - 035012

ER -