Determination of vibrational energy relaxation rates of C-H,D,T stretching modes on hydrogen, deuterium, and tritium-terminated H,D,T/C(111) and H,D,T/C(110) diamond surfaces using molecular dynamics simulation: Thermal effect

Hsiu Feng Lu, Ming Shun Ho, Sho Ching Hong, Ai Hsin Liu, Pei Fang Wu, Ying Chieh Sun

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Molecular dynamics simulations were carried out to determine the vibrational energy relaxation rates for C-H,D,T stretches on hydrogen-, deuterium-, and tritium-terminated H,D,T/C(111) and H,D,T/C(110) diamond surfaces at high temperatures based on the Bloch-Redfield theory and the calculated power spectra of fluctuating force along C-H,D,T stretches. The lifetime of C-H stretches on H/(110) surfaces at room temperature was found to be 0.8 ps, which is much shorter than the calculated lifetime of 30 ps on a H/C(111) surface attributed to 1:3 resonance. This is due to the blueshift of the 1:2 resonance domain in the force power spectra for a H/C(110) surface. The lifetimes of C-H stretches on a H/C(110) surface and C-D,T stretches on both D,T/C(111) and D,T/C(110) surfaces, which all undergo 1:2 resonance energy relaxation, are all on the time scale of tenths of a picosecond at room temperature and are approximately inversely proportional to the square of the temperature at high temperatures. For C-H stretches on a H/C(111) surface, the lifetimes at high temperatures are shortened much further not only by the rise in the temperature but also due to the thermal broadening of the resonance peaks in the force power spectra. The characteristics of power spectra and the resulting relaxation rates were analyzed using a simple model of a constrained diatomic bond in a harmonic bending potential field. The present results suggest that, since the resonance frequencies of C-H stretches are located within the border region between the 1:2 and 1:3 resonance domains, the vibrational energy relaxation of C-H stretches may differ by more than an order of one on different monohydrided low index unreconstructed diamond surfaces in contrast to the lifetimes of C-D,T stretches on these diamond surfaces, which are all on the same time scale at a given temperature.

Original languageEnglish
Pages (from-to)6898-6904
Number of pages7
JournalJournal of Chemical Physics
Volume109
Issue number16
DOIs
Publication statusPublished - 1998 Dec 1

Fingerprint

Diamond
Tritium
Deuterium
tritium
Thermal effects
Stretching
temperature effects
Molecular dynamics
deuterium
Hydrogen
diamonds
molecular dynamics
Computer simulation
hydrogen
Power spectrum
power spectra
simulation
life (durability)
energy
Temperature

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this

@article{ee337d33146549d299b29e452dd6e03b,
title = "Determination of vibrational energy relaxation rates of C-H,D,T stretching modes on hydrogen, deuterium, and tritium-terminated H,D,T/C(111) and H,D,T/C(110) diamond surfaces using molecular dynamics simulation: Thermal effect",
abstract = "Molecular dynamics simulations were carried out to determine the vibrational energy relaxation rates for C-H,D,T stretches on hydrogen-, deuterium-, and tritium-terminated H,D,T/C(111) and H,D,T/C(110) diamond surfaces at high temperatures based on the Bloch-Redfield theory and the calculated power spectra of fluctuating force along C-H,D,T stretches. The lifetime of C-H stretches on H/(110) surfaces at room temperature was found to be 0.8 ps, which is much shorter than the calculated lifetime of 30 ps on a H/C(111) surface attributed to 1:3 resonance. This is due to the blueshift of the 1:2 resonance domain in the force power spectra for a H/C(110) surface. The lifetimes of C-H stretches on a H/C(110) surface and C-D,T stretches on both D,T/C(111) and D,T/C(110) surfaces, which all undergo 1:2 resonance energy relaxation, are all on the time scale of tenths of a picosecond at room temperature and are approximately inversely proportional to the square of the temperature at high temperatures. For C-H stretches on a H/C(111) surface, the lifetimes at high temperatures are shortened much further not only by the rise in the temperature but also due to the thermal broadening of the resonance peaks in the force power spectra. The characteristics of power spectra and the resulting relaxation rates were analyzed using a simple model of a constrained diatomic bond in a harmonic bending potential field. The present results suggest that, since the resonance frequencies of C-H stretches are located within the border region between the 1:2 and 1:3 resonance domains, the vibrational energy relaxation of C-H stretches may differ by more than an order of one on different monohydrided low index unreconstructed diamond surfaces in contrast to the lifetimes of C-D,T stretches on these diamond surfaces, which are all on the same time scale at a given temperature.",
author = "Lu, {Hsiu Feng} and Ho, {Ming Shun} and Hong, {Sho Ching} and Liu, {Ai Hsin} and Wu, {Pei Fang} and Sun, {Ying Chieh}",
year = "1998",
month = "12",
day = "1",
doi = "10.1063/1.477351",
language = "English",
volume = "109",
pages = "6898--6904",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "16",

}

TY - JOUR

T1 - Determination of vibrational energy relaxation rates of C-H,D,T stretching modes on hydrogen, deuterium, and tritium-terminated H,D,T/C(111) and H,D,T/C(110) diamond surfaces using molecular dynamics simulation

T2 - Thermal effect

AU - Lu, Hsiu Feng

AU - Ho, Ming Shun

AU - Hong, Sho Ching

AU - Liu, Ai Hsin

AU - Wu, Pei Fang

AU - Sun, Ying Chieh

PY - 1998/12/1

Y1 - 1998/12/1

N2 - Molecular dynamics simulations were carried out to determine the vibrational energy relaxation rates for C-H,D,T stretches on hydrogen-, deuterium-, and tritium-terminated H,D,T/C(111) and H,D,T/C(110) diamond surfaces at high temperatures based on the Bloch-Redfield theory and the calculated power spectra of fluctuating force along C-H,D,T stretches. The lifetime of C-H stretches on H/(110) surfaces at room temperature was found to be 0.8 ps, which is much shorter than the calculated lifetime of 30 ps on a H/C(111) surface attributed to 1:3 resonance. This is due to the blueshift of the 1:2 resonance domain in the force power spectra for a H/C(110) surface. The lifetimes of C-H stretches on a H/C(110) surface and C-D,T stretches on both D,T/C(111) and D,T/C(110) surfaces, which all undergo 1:2 resonance energy relaxation, are all on the time scale of tenths of a picosecond at room temperature and are approximately inversely proportional to the square of the temperature at high temperatures. For C-H stretches on a H/C(111) surface, the lifetimes at high temperatures are shortened much further not only by the rise in the temperature but also due to the thermal broadening of the resonance peaks in the force power spectra. The characteristics of power spectra and the resulting relaxation rates were analyzed using a simple model of a constrained diatomic bond in a harmonic bending potential field. The present results suggest that, since the resonance frequencies of C-H stretches are located within the border region between the 1:2 and 1:3 resonance domains, the vibrational energy relaxation of C-H stretches may differ by more than an order of one on different monohydrided low index unreconstructed diamond surfaces in contrast to the lifetimes of C-D,T stretches on these diamond surfaces, which are all on the same time scale at a given temperature.

AB - Molecular dynamics simulations were carried out to determine the vibrational energy relaxation rates for C-H,D,T stretches on hydrogen-, deuterium-, and tritium-terminated H,D,T/C(111) and H,D,T/C(110) diamond surfaces at high temperatures based on the Bloch-Redfield theory and the calculated power spectra of fluctuating force along C-H,D,T stretches. The lifetime of C-H stretches on H/(110) surfaces at room temperature was found to be 0.8 ps, which is much shorter than the calculated lifetime of 30 ps on a H/C(111) surface attributed to 1:3 resonance. This is due to the blueshift of the 1:2 resonance domain in the force power spectra for a H/C(110) surface. The lifetimes of C-H stretches on a H/C(110) surface and C-D,T stretches on both D,T/C(111) and D,T/C(110) surfaces, which all undergo 1:2 resonance energy relaxation, are all on the time scale of tenths of a picosecond at room temperature and are approximately inversely proportional to the square of the temperature at high temperatures. For C-H stretches on a H/C(111) surface, the lifetimes at high temperatures are shortened much further not only by the rise in the temperature but also due to the thermal broadening of the resonance peaks in the force power spectra. The characteristics of power spectra and the resulting relaxation rates were analyzed using a simple model of a constrained diatomic bond in a harmonic bending potential field. The present results suggest that, since the resonance frequencies of C-H stretches are located within the border region between the 1:2 and 1:3 resonance domains, the vibrational energy relaxation of C-H stretches may differ by more than an order of one on different monohydrided low index unreconstructed diamond surfaces in contrast to the lifetimes of C-D,T stretches on these diamond surfaces, which are all on the same time scale at a given temperature.

UR - http://www.scopus.com/inward/record.url?scp=0010016321&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0010016321&partnerID=8YFLogxK

U2 - 10.1063/1.477351

DO - 10.1063/1.477351

M3 - Article

AN - SCOPUS:0010016321

VL - 109

SP - 6898

EP - 6904

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 16

ER -