Abstract
The aromatic amino acid tyrosine is an essential precursor for the synthesis of catecholamines, including l-DOPA, tyramine, and dopamine. A number of metabolic disorders have been linked to abnormal tyrosine levels in biological fluids. In this study, we developed an enzyme cascade-triggered colorimetric reaction for the detection of tyrosine, based on the formation of yellow pigment (betalamic acid) and red fluorometric betaxanthin. Tyrosinase converts tyrosine to l-DOPA, and DOPA-dioxygenase catalyzes oxidative cleavage of l-DOPA into betalamic acid. Response is linear for tyrosine from 5 to 100 μM, and the detection limit (LOD) is 2.74 μM. The enzyme cascade reaction was applied to monitor tyrosinase activity and tyrosinase inhibition assays. Lastly, the performance of the proposed biosensor proved successful in the analysis of urine samples without the need for pre-treatment.
Original language | English |
---|---|
Pages (from-to) | 29745-29750 |
Number of pages | 6 |
Journal | RSC Advances |
Volume | 10 |
Issue number | 50 |
DOIs | |
Publication status | Published - 2020 Aug 12 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering