Abstract
Design of an optimal controller minimizing the integral of squared error (ISE) of the closed-loop system for an interval plant via evolutionary approaches is proposed in this paper. Based on a worst-case design philosophy, the design problem is formulated as a minimax optimization problem from the signal energy point of view, and subsequently solved by two interactive genetic algorithms. To ensure robust stability of the closed-loop system, root locations of the Kharitonov polynomials associated with the characteristic polynomial are used to establish a constraint handling mechanism for incorporation into the fitness function to effectively evaluate chromosomes in the current population. To accelerate the derivation process to obtain the optimal controller, alternative approaches based on the two-phase evolutionary scheme are also proposed, in which the worst-case ISE is suitably estimated via information provided by the Kharitonov plants. Thus, the derived controller not only stabilizes the interval plant, but also minimizes the ISE criterion of the closed-loop system. Constraints on higher order plants and controller order commonly encountered by conventional design methods are therefore removed by using the proposed approach.
Original language | English |
---|---|
Pages (from-to) | 1609-1617 |
Number of pages | 9 |
Journal | IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics |
Volume | 34 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2004 Jun |
Externally published | Yes |
Keywords
- Genetic algorithms
- Integral of squared error (ISE)
- Interval plants
- Minimax optimization
- Robust controllers
- Signal energy
ASJC Scopus subject areas
- Control and Systems Engineering
- Software
- Information Systems
- Human-Computer Interaction
- Computer Science Applications
- Electrical and Electronic Engineering