Abstract
In this study, flake-like sheets (S-MVO) and flowers-like MnV2O6 (F-MVO) anode materials are synthesized by a facile hydrothermal technique for the first time applied to Na-ion storage. In order to better understand the behavior of Na atoms in the structure of MnV2O6, ab-initio methods predict for convenient migration paths. Additionally, first-principle calculations are used to determine the electronic and optical properties. The steady reversible discharge capacity exhibits 348 mAh g−1 for S-MVO electrode and 231 mAh g−1 for F-MVO electrode at a current density of 100 mA/g over the 50 cycles. The stable reversible capacity ascribed from conversion with combination of intercalation/deintercalation reaction. The S-MVO sample demonstrates significant electrochemical performance without any hybridizing of carbonaceous materials. The mesoporous thin morphology provides enhanced kinetics activity, which suggests facilitating the electronic/ionic transfer. Thus, the simple manner of Na+ migration path prediction, cost-effective route of bi-metal mixed novel materials may open a way for the design of potential electrodes for commercial and future large-scale high-performance Na-ion energy storage devices.
Original language | English |
---|---|
Article number | 100915 |
Journal | Journal of Energy Storage |
Volume | 26 |
DOIs | |
Publication status | Published - 2019 Dec |
Externally published | Yes |
Keywords
- 2D MnVO
- Anode
- Energy storage
- Sodium-ion battery
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering