Design and experiment of a macro-micro planar maglev positioning system

Mei Yung Chen*, Tzuo Bo Lin, Shao Kang Hung, Li Chen Fu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

In this paper, a new planar magnetic levitation (maglev) positioning system is proposed, which is capable of executing dual-axis planar motions purely involving magnetic forces. Functionally, such a mechanism behaves like a planar XY table with micrometer precision. Specifically, in this system, a new structure with an adaptive sliding-mode control (ASMC) algorithm is described, which aims to achieve the following three goals: 1) a large moving range (millimeter level); 2) precise positioning (micrometer level); and 3) fast response. The system consists of a moving carrier platform, six permanent magnets (PMs) attached to the carrier, and six electromagnets mounted on a fixed base. After exploring the characteristics of the magnetic forces between PMs and electromagnets, the general 6-DOF dynamic model of this system is derived and analyzed. Then, because of the naturally unstable behavior inherent in maglev systems, the proposed ASMC guarantees satisfactory performance of the maglev system. Experiments have successfully demonstrated the feasibility and effectiveness of the overall system.

Original languageEnglish
Article number6068244
Pages (from-to)4128-4139
Number of pages12
JournalIEEE Transactions on Industrial Electronics
Volume59
Issue number11
DOIs
Publication statusPublished - 2012 Nov

Keywords

  • Adaptive sliding-mode controller
  • magnetic levitation (maglev)
  • precision positioning

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Design and experiment of a macro-micro planar maglev positioning system'. Together they form a unique fingerprint.

Cite this