Deep Learning-Based Real-Time Multiple-Person Action Recognition System

Jen Kai Tsai, Chen Chien Hsu, Wei Yen Wang, Shao Kang Huang

Research output: Contribution to journalLetter

Abstract

Action recognition has gained great attention in automatic video analysis, greatly reducing the cost of human resources for smart surveillance. Most methods, however, focus on the detection of only one action event for a single person in a well-segmented video, rather than the recognition of multiple actions performed by more than one person at the same time for an untrimmed video. In this paper, we propose a deep learning-based multiple-person action recognition system for use in various real-time smart surveillance applications. By capturing a video stream of the scene, the proposed system can detect and track multiple people appearing in the scene and subsequently recognize their actions. Thanks to high resolution of the video frames, we establish a zoom-in function to obtain more satisfactory action recognition results when people in the scene become too far from the camera. To further improve the accuracy, recognition results from inflated 3D ConvNet (I3D) with multiple sliding windows are processed by a nonmaximum suppression (NMS) approach to obtain a more robust decision. Experimental results show that the proposed method can perform multiple-person action recognition in real time suitable for applications such as long-term care environments.

Original languageEnglish
Article number4758
Pages (from-to)1-17
Number of pages17
JournalSensors (Basel, Switzerland)
Volume20
Issue number17
DOIs
Publication statusPublished - 2020 Aug 23

Keywords

  • action recognition
  • deep learning
  • human tracking
  • smart surveillance

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Deep Learning-Based Real-Time Multiple-Person Action Recognition System'. Together they form a unique fingerprint.

  • Cite this