DANCER: Entity Description Augmented Named Entity Corrector for Automatic Speech Recognition

Yi Cheng Wang*, Hsin Wei Wang, Bi Cheng Yan, Chi Han Lin, Berlin Chen*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

End-to-end automatic speech recognition (E2E ASR) systems often suffer from mistranscription of domain-specific phrases, such as named entities, sometimes leading to catastrophic failures in downstream tasks. A family of fast and lightweight named entity correction (NEC) models for ASR have recently been proposed, which normally build on phonetic-level edit distance algorithms and have shown impressive NEC performance. However, as the named entity (NE) list grows, the problems of phonetic confusion in the NE list are exacerbated; for example, homophone ambiguities increase substantially. In view of this, we proposed a novel Description Augmented Named entity Cor-rEctoR (dubbed DANCER), which leverages entity descriptions to provide additional information to facilitate mitigation of phonetic confusion for NEC on ASR transcription. To this end, an efficient entity description augmented masked language model (EDA-MLM) comprised of a dense retrieval model is introduced, enabling MLM to adapt swiftly to domain-specific entities for the NEC task. A series of experiments conducted on the AISHELL-1 and Homophone datasets confirm the effectiveness of our modeling approach. DANCER outperforms a strong baseline, the phonetic edit-distance-based NEC model (PED-NEC), by a character error rate (CER) reduction of about 7% relatively on AISHELL-1 for named entities. More notably, when tested on Homophone that contains named entities of high phonetic confusion, DANCER offers a more pronounced CER reduction of 46% relatively over PED-NEC for named entities. The code is available at https://github.com/Amiannn/Dancer.

Original languageEnglish
Title of host publication2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
EditorsNicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
PublisherEuropean Language Resources Association (ELRA)
Pages4333-4342
Number of pages10
ISBN (Electronic)9782493814104
Publication statusPublished - 2024
EventJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 - Hybrid, Torino, Italy
Duration: 2024 May 202024 May 25

Publication series

Name2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings

Conference

ConferenceJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Country/TerritoryItaly
CityHybrid, Torino
Period2024/05/202024/05/25

Keywords

  • automatic speech recognition
  • domain adaption
  • masked language model
  • named entity correction
  • nearest neighbor language model

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computational Theory and Mathematics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'DANCER: Entity Description Augmented Named Entity Corrector for Automatic Speech Recognition'. Together they form a unique fingerprint.

Cite this