TY - JOUR
T1 - Construction of Novel Cyclic Tetrads by Axial Coordination of Thiaporphyrins to Tin(IV) Porphyrin
AU - Alka, A.
AU - Pareek, Yogita
AU - Shetti, Vijayendra S.
AU - Rajeswara Rao, M.
AU - Theophall, Gregory G.
AU - Lee, Way Zen
AU - Lakshmi, K. V.
AU - Ravikanth, M.
PY - 2017/11/20
Y1 - 2017/11/20
N2 - We report the formation of new cyclic porphyrin tetrads 1 and 2, which were obtained from the reaction between dihydroxytin(IV) porphyrin and cis-dihydroxy-21-thiaporphyrin/21,23-dithiaporphyrin. The unique oxophilicity of tin(IV) porphyrin was the driving force for the formation of these tetrads. Moreover, these novel tetrads represent the first examples of cyclic porphyrins containing tin(IV) that are constructed exclusively on the basis of the "Sn-O" interaction without any other complementary, noncompetitive mode of interactions. The molecular structures of the cyclic tetrads have been investigated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, NMR spectroscopy, quantum-mechanical calculations, and, in one case, single-crystal X-ray crystallography. The X-ray structure revealed that the two cis-dihydroxy-N2S2 porphyrins were coordinated at the axial positions of two tin(IV) porphyrins, leading to the symmetric cyclic tetrad structure. The optical properties of tetrads were studied, and these compounds were stable under redox conditions. Preliminary photophysical studies carried out on the tetrads indicated efficient energy transfer from tin(IV) porphyrin to the thiaporphyrin unit, which highlights their potential applications in energy and electron transfer in the future.
AB - We report the formation of new cyclic porphyrin tetrads 1 and 2, which were obtained from the reaction between dihydroxytin(IV) porphyrin and cis-dihydroxy-21-thiaporphyrin/21,23-dithiaporphyrin. The unique oxophilicity of tin(IV) porphyrin was the driving force for the formation of these tetrads. Moreover, these novel tetrads represent the first examples of cyclic porphyrins containing tin(IV) that are constructed exclusively on the basis of the "Sn-O" interaction without any other complementary, noncompetitive mode of interactions. The molecular structures of the cyclic tetrads have been investigated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, NMR spectroscopy, quantum-mechanical calculations, and, in one case, single-crystal X-ray crystallography. The X-ray structure revealed that the two cis-dihydroxy-N2S2 porphyrins were coordinated at the axial positions of two tin(IV) porphyrins, leading to the symmetric cyclic tetrad structure. The optical properties of tetrads were studied, and these compounds were stable under redox conditions. Preliminary photophysical studies carried out on the tetrads indicated efficient energy transfer from tin(IV) porphyrin to the thiaporphyrin unit, which highlights their potential applications in energy and electron transfer in the future.
UR - http://www.scopus.com/inward/record.url?scp=85034578537&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034578537&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.7b01966
DO - 10.1021/acs.inorgchem.7b01966
M3 - Article
AN - SCOPUS:85034578537
VL - 56
SP - 13913
EP - 13929
JO - Inorganic Chemistry
JF - Inorganic Chemistry
SN - 0020-1669
IS - 22
ER -