Computing the full spectrum of large sparse palindromic quadratic eigenvalue problems arising from surface Green's function calculations

Tsung Ming Huang, Wen Wei Lin, Heng Tian, Guan Hua Chen

Research output: Contribution to journalArticle

Abstract

Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener–Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000×4000 at the density functional tight binding level, corresponding to a 8×8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.

Original languageEnglish
Pages (from-to)340-355
Number of pages16
JournalJournal of Computational Physics
Volume356
DOIs
Publication statusPublished - 2018 Mar 1

Fingerprint

Green's function
Hamiltonians
eigenvalues
Green's functions
shift
Factorization
Nanowires
reviewing
cross sections
Transistors
factorization
nanowires
transistors
matrices
cells
simulation

Keywords

  • G⊤SHIRA
  • Non-equivalence deflation
  • Palindromic quadratic eigenvalue problem
  • Quantum transport
  • Surface Green's function

ASJC Scopus subject areas

  • Numerical Analysis
  • Modelling and Simulation
  • Physics and Astronomy (miscellaneous)
  • Physics and Astronomy(all)
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics

Cite this

Computing the full spectrum of large sparse palindromic quadratic eigenvalue problems arising from surface Green's function calculations. / Huang, Tsung Ming; Lin, Wen Wei; Tian, Heng; Chen, Guan Hua.

In: Journal of Computational Physics, Vol. 356, 01.03.2018, p. 340-355.

Research output: Contribution to journalArticle

@article{56f753eccf8a4d92878c159d9adf8fd4,
title = "Computing the full spectrum of large sparse palindromic quadratic eigenvalue problems arising from surface Green's function calculations",
abstract = "Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener–Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000×4000 at the density functional tight binding level, corresponding to a 8×8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.",
keywords = "G⊤SHIRA, Non-equivalence deflation, Palindromic quadratic eigenvalue problem, Quantum transport, Surface Green's function",
author = "Huang, {Tsung Ming} and Lin, {Wen Wei} and Heng Tian and Chen, {Guan Hua}",
year = "2018",
month = "3",
day = "1",
doi = "10.1016/j.jcp.2017.12.011",
language = "English",
volume = "356",
pages = "340--355",
journal = "Journal of Computational Physics",
issn = "0021-9991",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Computing the full spectrum of large sparse palindromic quadratic eigenvalue problems arising from surface Green's function calculations

AU - Huang, Tsung Ming

AU - Lin, Wen Wei

AU - Tian, Heng

AU - Chen, Guan Hua

PY - 2018/3/1

Y1 - 2018/3/1

N2 - Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener–Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000×4000 at the density functional tight binding level, corresponding to a 8×8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.

AB - Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener–Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000×4000 at the density functional tight binding level, corresponding to a 8×8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.

KW - G⊤SHIRA

KW - Non-equivalence deflation

KW - Palindromic quadratic eigenvalue problem

KW - Quantum transport

KW - Surface Green's function

UR - http://www.scopus.com/inward/record.url?scp=85037976591&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85037976591&partnerID=8YFLogxK

U2 - 10.1016/j.jcp.2017.12.011

DO - 10.1016/j.jcp.2017.12.011

M3 - Article

AN - SCOPUS:85037976591

VL - 356

SP - 340

EP - 355

JO - Journal of Computational Physics

JF - Journal of Computational Physics

SN - 0021-9991

ER -