TY - JOUR
T1 - Collimation of the Relativistic Jet in the Quasar 3C 273
AU - Okino, Hiroki
AU - Akiyama, Kazunori
AU - Asada, Keiichi
AU - Gómez, José L.
AU - Hada, Kazuhiro
AU - Honma, Mareki
AU - Krichbaum, Thomas P.
AU - Kino, Motoki
AU - Nagai, Hiroshi
AU - Bach, Uwe
AU - Blackburn, Lindy
AU - Bouman, Katherine L.
AU - Chael, Andrew
AU - Crew, Geoffrey B.
AU - Doeleman, Sheperd S.
AU - Fish, Vincent L.
AU - Goddi, Ciriaco
AU - Issaoun, Sara
AU - Johnson, Michael D.
AU - Jorstad, Svetlana
AU - Koyama, Shoko
AU - Lonsdale, Colin J.
AU - Lu, Ru Sen
AU - Martí-Vidal, Ivan
AU - Matthews, Lynn D.
AU - Mizuno, Yosuke
AU - Moriyama, Kotaro
AU - Nakamura, Masanori
AU - Pu, Hung Yi
AU - Ros, Eduardo
AU - Savolainen, Tuomas
AU - Tazaki, Fumie
AU - Wagner, Jan
AU - Wielgus, Maciek
AU - Zensus, Anton
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - The collimation of relativistic jets launched from the vicinity of supermassive black holes (SMBHs) at the centers of active galactic nuclei (AGNs) is one of the key questions to understand the nature of AGN jets. However, little is known about the detailed jet structure for AGN like quasars since very high angular resolutions are required to resolve these objects. We present very long baseline interferometry (VLBI) observations of the archetypical quasar 3C 273 at 86 GHz, performed with the Global Millimeter VLBI Array, for the first time including the Atacama Large Millimeter/submillimeter Array. Our observations achieve a high angular resolution down to ∼60 μas, resolving the innermost part of the jet ever on scales of ∼105 Schwarzschild radii. Our observations, including close-in-time High Sensitivity Array observations of 3C 273 at 15, 22, and 43 GHz, suggest that the inner jet collimates parabolically, while the outer jet expands conically, similar to jets from other nearby low-luminosity AGNs. We discovered the jet collimation break around 107 Schwarzschild radii, providing the first compelling evidence for structural transition in a quasar jet. The location of the collimation break for 3C 273 is farther downstream from the sphere of gravitational influence (SGI) from the central SMBH. With the results for other AGN jets, our results show that the end of the collimation zone in AGN jets is governed not only by the SGI of the SMBH but also by the more diverse properties of the central nuclei.
AB - The collimation of relativistic jets launched from the vicinity of supermassive black holes (SMBHs) at the centers of active galactic nuclei (AGNs) is one of the key questions to understand the nature of AGN jets. However, little is known about the detailed jet structure for AGN like quasars since very high angular resolutions are required to resolve these objects. We present very long baseline interferometry (VLBI) observations of the archetypical quasar 3C 273 at 86 GHz, performed with the Global Millimeter VLBI Array, for the first time including the Atacama Large Millimeter/submillimeter Array. Our observations achieve a high angular resolution down to ∼60 μas, resolving the innermost part of the jet ever on scales of ∼105 Schwarzschild radii. Our observations, including close-in-time High Sensitivity Array observations of 3C 273 at 15, 22, and 43 GHz, suggest that the inner jet collimates parabolically, while the outer jet expands conically, similar to jets from other nearby low-luminosity AGNs. We discovered the jet collimation break around 107 Schwarzschild radii, providing the first compelling evidence for structural transition in a quasar jet. The location of the collimation break for 3C 273 is farther downstream from the sphere of gravitational influence (SGI) from the central SMBH. With the results for other AGN jets, our results show that the end of the collimation zone in AGN jets is governed not only by the SGI of the SMBH but also by the more diverse properties of the central nuclei.
UR - http://www.scopus.com/inward/record.url?scp=85143071703&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85143071703&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac97e5
DO - 10.3847/1538-4357/ac97e5
M3 - Article
AN - SCOPUS:85143071703
SN - 0004-637X
VL - 940
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 65
ER -