Chemical variation in Pennsylvanian brachiopod shells - Diagenetic, taxonomic, microstructural, and seasonal effects

Ethan L. Grossman, Horng-Sheng Mii, Chuanlun Zhang, Thomas E. Yancey

Research output: Contribution to journalArticle

90 Citations (Scopus)

Abstract

To improve our ability to use minor and trace element (MTE) variation in biotic carbonates as diagenetic and paleoenvironmental indicators, we performed electron probe microanalysis on more than 100 Late Pennsylvanian brachiopod shells from Texas, Kansas, Missouri, and New Mexico. Texturally preserved specimens of the genera Crurithyris, Composite, and Neospirifer from all three regions were analyzed, as were Eridmatus specimens from Texas. Twenty measurements were made in two transects across each shell. Shell microstructure and cathodoluminescence were described for each spot analyzed. Three modern shells were analyzed for comparison. Diagenesis, as indicated by cathodoluminescence and/or absence of microstructure, tends to enrich shells in Fe and Mn (X/Ca ≥ 0.7 mmol/mol) and deplete shells in Na and S. Mg content shows no consistent trend with diagenesis. In fabric-retentive, nonluminescent shell areas, Mg, Na, and S contents vary twofold to sevenfold depending on taxonomy, microstructure, and season. Overall, taxonomy is the dominant factor controlling MTE composition. Na and S concentrations are consistently highest in Crurithyris and Eridmatus, intermediate in Neospirifer, and lowest in Composita. In taxa with mixed microstructure (Composita, Neospirifer), secondary fibrous layer calcite contains 1.5 to 2 times more Na than does interlayer prismatic calcite. Thus, whole-shell Na contents of these taxa depend on the proportion of fibrous and prismatic shell. Seasonal cycles are revealed in MTE transects across growth lines. Mg, Na, and S contents commonly vary by more than a factor of two between maxima (presumably summer) and minima (winter) within the same shell. Retention of taxonomic, microstructural, and seasonal effects in shell chemistry argues for preservation of original chemistry in fabric-retentive, nonluminescent Paleozoic brachiopod shells.

Original languageEnglish
Pages (from-to)1011-1022
Number of pages12
JournalJournal of Sedimentary Research
Volume66
Issue number5
DOIs
Publication statusPublished - 1996 Sep 1

Fingerprint

Pennsylvanian
brachiopod
shell
microstructure
cathodoluminescence
trace element
diagenesis
effect
chemical
calcite
transect
electron probe analysis
Paleozoic
carbonate

ASJC Scopus subject areas

  • Geology

Cite this

Chemical variation in Pennsylvanian brachiopod shells - Diagenetic, taxonomic, microstructural, and seasonal effects. / Grossman, Ethan L.; Mii, Horng-Sheng; Zhang, Chuanlun; Yancey, Thomas E.

In: Journal of Sedimentary Research, Vol. 66, No. 5, 01.09.1996, p. 1011-1022.

Research output: Contribution to journalArticle

@article{689d65cb619a49bca218704443ceea3d,
title = "Chemical variation in Pennsylvanian brachiopod shells - Diagenetic, taxonomic, microstructural, and seasonal effects",
abstract = "To improve our ability to use minor and trace element (MTE) variation in biotic carbonates as diagenetic and paleoenvironmental indicators, we performed electron probe microanalysis on more than 100 Late Pennsylvanian brachiopod shells from Texas, Kansas, Missouri, and New Mexico. Texturally preserved specimens of the genera Crurithyris, Composite, and Neospirifer from all three regions were analyzed, as were Eridmatus specimens from Texas. Twenty measurements were made in two transects across each shell. Shell microstructure and cathodoluminescence were described for each spot analyzed. Three modern shells were analyzed for comparison. Diagenesis, as indicated by cathodoluminescence and/or absence of microstructure, tends to enrich shells in Fe and Mn (X/Ca ≥ 0.7 mmol/mol) and deplete shells in Na and S. Mg content shows no consistent trend with diagenesis. In fabric-retentive, nonluminescent shell areas, Mg, Na, and S contents vary twofold to sevenfold depending on taxonomy, microstructure, and season. Overall, taxonomy is the dominant factor controlling MTE composition. Na and S concentrations are consistently highest in Crurithyris and Eridmatus, intermediate in Neospirifer, and lowest in Composita. In taxa with mixed microstructure (Composita, Neospirifer), secondary fibrous layer calcite contains 1.5 to 2 times more Na than does interlayer prismatic calcite. Thus, whole-shell Na contents of these taxa depend on the proportion of fibrous and prismatic shell. Seasonal cycles are revealed in MTE transects across growth lines. Mg, Na, and S contents commonly vary by more than a factor of two between maxima (presumably summer) and minima (winter) within the same shell. Retention of taxonomic, microstructural, and seasonal effects in shell chemistry argues for preservation of original chemistry in fabric-retentive, nonluminescent Paleozoic brachiopod shells.",
author = "Grossman, {Ethan L.} and Horng-Sheng Mii and Chuanlun Zhang and Yancey, {Thomas E.}",
year = "1996",
month = "9",
day = "1",
doi = "10.1306/D4268469-2B26-11D7-8648000102C1865D",
language = "English",
volume = "66",
pages = "1011--1022",
journal = "Journal of Sedimentary Research",
issn = "1527-1404",
publisher = "SEPM Society for Sedimentary Geology",
number = "5",

}

TY - JOUR

T1 - Chemical variation in Pennsylvanian brachiopod shells - Diagenetic, taxonomic, microstructural, and seasonal effects

AU - Grossman, Ethan L.

AU - Mii, Horng-Sheng

AU - Zhang, Chuanlun

AU - Yancey, Thomas E.

PY - 1996/9/1

Y1 - 1996/9/1

N2 - To improve our ability to use minor and trace element (MTE) variation in biotic carbonates as diagenetic and paleoenvironmental indicators, we performed electron probe microanalysis on more than 100 Late Pennsylvanian brachiopod shells from Texas, Kansas, Missouri, and New Mexico. Texturally preserved specimens of the genera Crurithyris, Composite, and Neospirifer from all three regions were analyzed, as were Eridmatus specimens from Texas. Twenty measurements were made in two transects across each shell. Shell microstructure and cathodoluminescence were described for each spot analyzed. Three modern shells were analyzed for comparison. Diagenesis, as indicated by cathodoluminescence and/or absence of microstructure, tends to enrich shells in Fe and Mn (X/Ca ≥ 0.7 mmol/mol) and deplete shells in Na and S. Mg content shows no consistent trend with diagenesis. In fabric-retentive, nonluminescent shell areas, Mg, Na, and S contents vary twofold to sevenfold depending on taxonomy, microstructure, and season. Overall, taxonomy is the dominant factor controlling MTE composition. Na and S concentrations are consistently highest in Crurithyris and Eridmatus, intermediate in Neospirifer, and lowest in Composita. In taxa with mixed microstructure (Composita, Neospirifer), secondary fibrous layer calcite contains 1.5 to 2 times more Na than does interlayer prismatic calcite. Thus, whole-shell Na contents of these taxa depend on the proportion of fibrous and prismatic shell. Seasonal cycles are revealed in MTE transects across growth lines. Mg, Na, and S contents commonly vary by more than a factor of two between maxima (presumably summer) and minima (winter) within the same shell. Retention of taxonomic, microstructural, and seasonal effects in shell chemistry argues for preservation of original chemistry in fabric-retentive, nonluminescent Paleozoic brachiopod shells.

AB - To improve our ability to use minor and trace element (MTE) variation in biotic carbonates as diagenetic and paleoenvironmental indicators, we performed electron probe microanalysis on more than 100 Late Pennsylvanian brachiopod shells from Texas, Kansas, Missouri, and New Mexico. Texturally preserved specimens of the genera Crurithyris, Composite, and Neospirifer from all three regions were analyzed, as were Eridmatus specimens from Texas. Twenty measurements were made in two transects across each shell. Shell microstructure and cathodoluminescence were described for each spot analyzed. Three modern shells were analyzed for comparison. Diagenesis, as indicated by cathodoluminescence and/or absence of microstructure, tends to enrich shells in Fe and Mn (X/Ca ≥ 0.7 mmol/mol) and deplete shells in Na and S. Mg content shows no consistent trend with diagenesis. In fabric-retentive, nonluminescent shell areas, Mg, Na, and S contents vary twofold to sevenfold depending on taxonomy, microstructure, and season. Overall, taxonomy is the dominant factor controlling MTE composition. Na and S concentrations are consistently highest in Crurithyris and Eridmatus, intermediate in Neospirifer, and lowest in Composita. In taxa with mixed microstructure (Composita, Neospirifer), secondary fibrous layer calcite contains 1.5 to 2 times more Na than does interlayer prismatic calcite. Thus, whole-shell Na contents of these taxa depend on the proportion of fibrous and prismatic shell. Seasonal cycles are revealed in MTE transects across growth lines. Mg, Na, and S contents commonly vary by more than a factor of two between maxima (presumably summer) and minima (winter) within the same shell. Retention of taxonomic, microstructural, and seasonal effects in shell chemistry argues for preservation of original chemistry in fabric-retentive, nonluminescent Paleozoic brachiopod shells.

UR - http://www.scopus.com/inward/record.url?scp=0030432038&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030432038&partnerID=8YFLogxK

U2 - 10.1306/D4268469-2B26-11D7-8648000102C1865D

DO - 10.1306/D4268469-2B26-11D7-8648000102C1865D

M3 - Article

VL - 66

SP - 1011

EP - 1022

JO - Journal of Sedimentary Research

JF - Journal of Sedimentary Research

SN - 1527-1404

IS - 5

ER -