TY - JOUR
T1 - Change-point detection for shifts in control charts using fuzzy shift change-point algorithms
AU - Lu, Kang Ping
AU - Chang, Shao Tung
AU - Yang, Miin Shen
N1 - Publisher Copyright:
© 2015 Elsevier Ltd. All rights reserved.
PY - 2016/3
Y1 - 2016/3
N2 - Knowing the real time of changes, called change-point, in a process is essential for quickly identifying and removing special causes. Many change-point methods in statistical process control assume the distribution and the in-control parameters of the process known, however, they are rarely known accurately. Small errors accompanied with estimated parameters may lead to unfavorable change-point estimates. In this paper, a new method, called fuzzy shift change-point algorithm, which does not require the knowledge of the distribution nor the parameter of the process, is proposed to detect change-points for shifts in process mean. The fuzzy c-partition concept is embedded into change-point formulation in which any possible collection of change-points is considered as a partitioning of data with a fuzzy membership. These memberships are then transferred into the pseudo memberships of observations belonging to each individual cluster, so the fuzzy c-means clustering can be used to obtain the estimates for shifts. Subsequently, the fuzzy c-means algorithm is used again to obtain new iterates of change-point collection memberships by minimizing an objective function concerning the deviations between observations and the corresponding cluster means. The proposed algorithm is nonparametric and applicable to normal and non-normal processes in both phase I and II. The performance of the proposed fuzzy shift change-point algorithm is discussed in comparison with powerful statistical methods through extensive simulation studies. The results demonstrate the superiority and usefulness of our proposed method.
AB - Knowing the real time of changes, called change-point, in a process is essential for quickly identifying and removing special causes. Many change-point methods in statistical process control assume the distribution and the in-control parameters of the process known, however, they are rarely known accurately. Small errors accompanied with estimated parameters may lead to unfavorable change-point estimates. In this paper, a new method, called fuzzy shift change-point algorithm, which does not require the knowledge of the distribution nor the parameter of the process, is proposed to detect change-points for shifts in process mean. The fuzzy c-partition concept is embedded into change-point formulation in which any possible collection of change-points is considered as a partitioning of data with a fuzzy membership. These memberships are then transferred into the pseudo memberships of observations belonging to each individual cluster, so the fuzzy c-means clustering can be used to obtain the estimates for shifts. Subsequently, the fuzzy c-means algorithm is used again to obtain new iterates of change-point collection memberships by minimizing an objective function concerning the deviations between observations and the corresponding cluster means. The proposed algorithm is nonparametric and applicable to normal and non-normal processes in both phase I and II. The performance of the proposed fuzzy shift change-point algorithm is discussed in comparison with powerful statistical methods through extensive simulation studies. The results demonstrate the superiority and usefulness of our proposed method.
KW - Change-point
KW - Control chart
KW - Fuzzy clustering
KW - Fuzzy sets
KW - Fuzzy shift change-point algorithm
UR - http://www.scopus.com/inward/record.url?scp=84953738318&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84953738318&partnerID=8YFLogxK
U2 - 10.1016/j.cie.2015.12.002
DO - 10.1016/j.cie.2015.12.002
M3 - Article
AN - SCOPUS:84953738318
SN - 0360-8352
VL - 93
SP - 12
EP - 27
JO - Computers and Industrial Engineering
JF - Computers and Industrial Engineering
ER -