TY - JOUR
T1 - Calixsmaragdyrin
T2 - A Versatile Ligand for Coordination Complexes
AU - Chatterjee, Tamal
AU - Molnar, Brian
AU - Theophall, G. G.
AU - Lee, Way Zen
AU - Lakshmi, K. V.
AU - Ravikanth, Mangalampalli
N1 - Funding Information:
M.R. thanks the Department of Science and Technology, Government of India, for funding the project, and T.C. thanks CSIR for the SRF fellowship. K.V.L. thanks the Center for Computational Innovations (CCI) at Rensselaer Polytechnic Institute (Troy, NY) for computational time.
Publisher Copyright:
© 2017 American Chemical Society.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/4/3
Y1 - 2017/4/3
N2 - The Ru(II) and BF2 complexes of calixsmaragdyrin were prepared under simple reaction conditions and characterized by HR-MS, 1D and 2D NMR spectroscopy, optical spectroscopy, and electrochemistry, and the structure of the Ru(II) complex of calixsmaragdyrin was elucidated by X-ray crystallography. The crystal structure of the Ru(II) complex revealed that the Ru(II) ion is hexacoordinate with the three pyrrole nitrogen ligands from the tripyrrin unit of the calixsmaragdyrin macrocycle, and the remaining coordination sites of Ru(II) ion were occupied by two carbonyl groups and one hydroxyl (-OH) group. The calixsmaragdyrin macrocycle in the Ru(II) complex was distorted with a dome-like structure. In the BF2 complex of calixsmaragdyrin, the BF2 unit was bound to two pyrrolic nitrogens of the dipyrrin moiety of calixsmaragdyrin as deduced by detailed 1- and 2-dimensional NMR spectroscopy studies. The Ru(II) complex displayed a strong Soret-like absorption band at 449 nm with the absence of Q-bands, whereas the BF2 complex showed a Soret-like band at 475 nm with two well-defined Q-bands at 787 and 883 nm, respectively. Quantum mechanical DFT calculations yielded relaxed equilibrium structures that were similar to the X-ray crystal structures, and the related charge density distributions indicated that the d orbital of the Ru(II) ion was contributing to the HOMO and LUMO states. In addition, TD-DFT calculations successfully reproduced the large bathochromic shifts, oscillator strengths, and electronic transitions that were observed in the experimental absorption spectra of all three complexes. Both the Ru(II) and the BF2 complexes of calixsmaragdyrin were stable under redox conditions.
AB - The Ru(II) and BF2 complexes of calixsmaragdyrin were prepared under simple reaction conditions and characterized by HR-MS, 1D and 2D NMR spectroscopy, optical spectroscopy, and electrochemistry, and the structure of the Ru(II) complex of calixsmaragdyrin was elucidated by X-ray crystallography. The crystal structure of the Ru(II) complex revealed that the Ru(II) ion is hexacoordinate with the three pyrrole nitrogen ligands from the tripyrrin unit of the calixsmaragdyrin macrocycle, and the remaining coordination sites of Ru(II) ion were occupied by two carbonyl groups and one hydroxyl (-OH) group. The calixsmaragdyrin macrocycle in the Ru(II) complex was distorted with a dome-like structure. In the BF2 complex of calixsmaragdyrin, the BF2 unit was bound to two pyrrolic nitrogens of the dipyrrin moiety of calixsmaragdyrin as deduced by detailed 1- and 2-dimensional NMR spectroscopy studies. The Ru(II) complex displayed a strong Soret-like absorption band at 449 nm with the absence of Q-bands, whereas the BF2 complex showed a Soret-like band at 475 nm with two well-defined Q-bands at 787 and 883 nm, respectively. Quantum mechanical DFT calculations yielded relaxed equilibrium structures that were similar to the X-ray crystal structures, and the related charge density distributions indicated that the d orbital of the Ru(II) ion was contributing to the HOMO and LUMO states. In addition, TD-DFT calculations successfully reproduced the large bathochromic shifts, oscillator strengths, and electronic transitions that were observed in the experimental absorption spectra of all three complexes. Both the Ru(II) and the BF2 complexes of calixsmaragdyrin were stable under redox conditions.
UR - http://www.scopus.com/inward/record.url?scp=85017002667&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017002667&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.6b02225
DO - 10.1021/acs.inorgchem.6b02225
M3 - Article
AN - SCOPUS:85017002667
VL - 56
SP - 3763
EP - 3772
JO - Inorganic Chemistry
JF - Inorganic Chemistry
SN - 0020-1669
IS - 7
ER -