Calculations of vibrational energy relaxation rates of C-H,D,T stretching modes on hydrogen-, deuterium-, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces

Ying Chieh Sun, Jiunn Ming Chen

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

The vibrational energy relaxation rates of excited C-H,D,T stretching modes on hydrogen, deuterium, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces, respectively, are calculated using the Bloch-Redfield theory combined with classical molecular dynamics simulation. A valence force field is used to model the interactions between carbon atoms in the bulk. The calculated lifetimes of 30 and 0.2 ps for the first excited states of the C-H and C-D stretching modes agree well with the experimental results of 19 and 0.2 ps, respectively. The lifetime of the first excited state for the C-T stretching mode on the tritium-terminated T/C(111)1×1 diamond surface is predicted to be 0.3 ps. Analysis of the power spectra of the fluctuating force along the C-H,D,T bonds suggests that the vibrational energy relaxation of 1:3 resonance for the first excited state of the C-H stretching mode and 1:2 resonance for C-D and C-T stretching modes results in a difference of lifetimes by an order of 2 between the C-H stretching mode and C-D and C-T stretching modes on the hydrogen, deuterium, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces. Calculations of the relaxation rates for the v=2 states of C-H, C-D, and C-T stretches give lifetimes of 0.1, 0.2, and 0.4 ps, respectively, all on the time scale of tenths of a picosecond.

Original languageEnglish
Pages (from-to)7082-7086
Number of pages5
JournalJournal of Physical Chemistry B
Volume101
Issue number36
Publication statusPublished - 1997 Sep 4

Fingerprint

Dilatation and Curettage
Diamond
Tritium
Deuterium
tritium
Stretching
deuterium
Hydrogen
Diamonds
diamonds
hydrogen
Excited states
life (durability)
energy
Molecular Dynamics Simulation
excitation
Spectrum Analysis
Carbon
Power spectrum
field theory (physics)

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Engineering(all)

Cite this

@article{12a7ada9ab4e42358c3bdd420ed72746,
title = "Calculations of vibrational energy relaxation rates of C-H,D,T stretching modes on hydrogen-, deuterium-, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces",
abstract = "The vibrational energy relaxation rates of excited C-H,D,T stretching modes on hydrogen, deuterium, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces, respectively, are calculated using the Bloch-Redfield theory combined with classical molecular dynamics simulation. A valence force field is used to model the interactions between carbon atoms in the bulk. The calculated lifetimes of 30 and 0.2 ps for the first excited states of the C-H and C-D stretching modes agree well with the experimental results of 19 and 0.2 ps, respectively. The lifetime of the first excited state for the C-T stretching mode on the tritium-terminated T/C(111)1×1 diamond surface is predicted to be 0.3 ps. Analysis of the power spectra of the fluctuating force along the C-H,D,T bonds suggests that the vibrational energy relaxation of 1:3 resonance for the first excited state of the C-H stretching mode and 1:2 resonance for C-D and C-T stretching modes results in a difference of lifetimes by an order of 2 between the C-H stretching mode and C-D and C-T stretching modes on the hydrogen, deuterium, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces. Calculations of the relaxation rates for the v=2 states of C-H, C-D, and C-T stretches give lifetimes of 0.1, 0.2, and 0.4 ps, respectively, all on the time scale of tenths of a picosecond.",
author = "Sun, {Ying Chieh} and Chen, {Jiunn Ming}",
year = "1997",
month = "9",
day = "4",
language = "English",
volume = "101",
pages = "7082--7086",
journal = "Journal of Physical Chemistry B Materials",
issn = "1520-6106",
publisher = "American Chemical Society",
number = "36",

}

TY - JOUR

T1 - Calculations of vibrational energy relaxation rates of C-H,D,T stretching modes on hydrogen-, deuterium-, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces

AU - Sun, Ying Chieh

AU - Chen, Jiunn Ming

PY - 1997/9/4

Y1 - 1997/9/4

N2 - The vibrational energy relaxation rates of excited C-H,D,T stretching modes on hydrogen, deuterium, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces, respectively, are calculated using the Bloch-Redfield theory combined with classical molecular dynamics simulation. A valence force field is used to model the interactions between carbon atoms in the bulk. The calculated lifetimes of 30 and 0.2 ps for the first excited states of the C-H and C-D stretching modes agree well with the experimental results of 19 and 0.2 ps, respectively. The lifetime of the first excited state for the C-T stretching mode on the tritium-terminated T/C(111)1×1 diamond surface is predicted to be 0.3 ps. Analysis of the power spectra of the fluctuating force along the C-H,D,T bonds suggests that the vibrational energy relaxation of 1:3 resonance for the first excited state of the C-H stretching mode and 1:2 resonance for C-D and C-T stretching modes results in a difference of lifetimes by an order of 2 between the C-H stretching mode and C-D and C-T stretching modes on the hydrogen, deuterium, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces. Calculations of the relaxation rates for the v=2 states of C-H, C-D, and C-T stretches give lifetimes of 0.1, 0.2, and 0.4 ps, respectively, all on the time scale of tenths of a picosecond.

AB - The vibrational energy relaxation rates of excited C-H,D,T stretching modes on hydrogen, deuterium, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces, respectively, are calculated using the Bloch-Redfield theory combined with classical molecular dynamics simulation. A valence force field is used to model the interactions between carbon atoms in the bulk. The calculated lifetimes of 30 and 0.2 ps for the first excited states of the C-H and C-D stretching modes agree well with the experimental results of 19 and 0.2 ps, respectively. The lifetime of the first excited state for the C-T stretching mode on the tritium-terminated T/C(111)1×1 diamond surface is predicted to be 0.3 ps. Analysis of the power spectra of the fluctuating force along the C-H,D,T bonds suggests that the vibrational energy relaxation of 1:3 resonance for the first excited state of the C-H stretching mode and 1:2 resonance for C-D and C-T stretching modes results in a difference of lifetimes by an order of 2 between the C-H stretching mode and C-D and C-T stretching modes on the hydrogen, deuterium, and tritium-terminated H,D,T/C(111)1×1 diamond surfaces. Calculations of the relaxation rates for the v=2 states of C-H, C-D, and C-T stretches give lifetimes of 0.1, 0.2, and 0.4 ps, respectively, all on the time scale of tenths of a picosecond.

UR - http://www.scopus.com/inward/record.url?scp=0031552965&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031552965&partnerID=8YFLogxK

M3 - Article

VL - 101

SP - 7082

EP - 7086

JO - Journal of Physical Chemistry B Materials

JF - Journal of Physical Chemistry B Materials

SN - 1520-6106

IS - 36

ER -