Bipolar transport materials for electroluminescence applications

Yi Wei Tsai, Jen Shyang Ni, Feng Ling Wu, Ming Chang P. Yeh, Yu Jen Cheng, Li Zhong Tsai, Siao Yin Yu, San Yu Ting, Li Yin Chen, Yuh Sheng Wen, Mandy M. Lee, Jiann T. Lin

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Benzofuranyl benzene incorporating naphthyl (phenothiazinyl or dimesitylboryl) entities via meta-conjugation have been synthesized. These compounds exhibit bipolar transport characteristic with mobilities in the range of 10-5 to 10-4 cm2/V s at an electric field of 4 × 105 V/cm. The compounds with two naphthyl or dimesitylboryl substituents emit in the violet region with good solution quantum yields. The OLEDs fabricated from the benzofuranyl/dimethylboryl, benzofuranyl/naphthyl and benzofuranyl/dimethylboryl/phenathiazine derivatives have maximum external efficiencies of 1.01%, 1.41% and 3.14%, respectively.

Original languageEnglish
Pages (from-to)265-274
Number of pages10
JournalOrganic Electronics
Publication statusPublished - 2016 Mar 1


  • 2,3-benzofuran
  • Ambipolar
  • Flurorescence emitter
  • Organic light emitting diode
  • Wide band gap

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Chemistry(all)
  • Condensed Matter Physics
  • Materials Chemistry
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Bipolar transport materials for electroluminescence applications'. Together they form a unique fingerprint.

Cite this