Bimetallic Ru–Cu tellurido complexes: Controlled synthesis and electrochemical studies of copper halide–TeRu5 and Te2Ru4 clusters

Minghuey Shieh, Yen Yi Chu, Chia Yeh Miu, Pei Fan Wu, Tsau Ming Zeng

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

When [TeRu5(CO)14]2− (1) was treated with 1 equiv. of CuX (X = Cl, Br, I) in THF, mono-CuX–TeRu5 clusters [TeRu5(CO)14CuX]2− (X = Cl, 2a; Br, 2b; I, 2c) were obtained. Clusters 2a–2c consist of an octahedral TeRu5 core, in which one triangular Ru3 plane is capped by a μ3-CuX fragment. For CuX (X = Cl, Br), the reaction of complex 1 with 2 equiv. of CuX in THF at room temperature formed Cu4X2-linked di-TeRu5 clusters [(TeRu5(CO)14)2Cu4X2]2− (X = Cl, 3a; Br, 3b), while the same reaction in MeCN at −35 °C produced bis-CuX–TeRu5 complexes [TeRu5(CO)14(CuX)2]2− (X = Cl, 4a; Br, 4b). X-Ray analysis showed that 4b displays a TeRu5 core with two adjacent Ru3 triangles each capped by a μ3-CuBr ligand while 3b has two TeRu5 cores that are linked by a μ6-Cu4Br2 moiety. Clusters 4a and 4b underwent coupling reactions in THF to yield clusters 3a and 3b, and easily transformed to bis-CuX–Te2Ru4 clusters [Te2Ru4(CO)10(CuX)2]2− (X = Cl, 5a; X = Br, 5b) in MeCN. On the other hand, the reaction of 1 with 2 equiv. of CuI in THF directly produced the bis-CuI–Te2Ru4 cluster [Te2Ru4(CO)10(CuI)2]2− (5c). The nature, stability, stepwise cluster transformation, and electrochemistry of these CuX-incorporated TeRu5- and Te2Ru4-based complexes are discussed systematically. In particular, the effects of CuX and the metal cores (TeRu5 vs. Te2Ru4) on the resultant Te–Ru–Cu clusters are further elucidated by molecular orbital calculations at the B3LYP level of the density functional theory.

Original languageEnglish
Pages (from-to)1492-1503
Number of pages12
JournalJournal of the Chemical Society. Dalton Transactions
Volume39
Issue number6
DOIs
Publication statusPublished - 2010 Jan 26

    Fingerprint

ASJC Scopus subject areas

  • Chemistry(all)

Cite this