Abstract
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, multiscale permutation entropy (MPE) was introduced for feature extraction from faulty bearing vibration signals. After extracting feature vectors by MPE, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. Simulation results demonstrated that the proposed method is a very powerful algorithm for bearing fault diagnosis and has much better performance than the methods based on single scale permutation entropy (PE) and multiscale entropy (MSE).
Original language | English |
---|---|
Pages (from-to) | 1343-1356 |
Number of pages | 14 |
Journal | Entropy |
Volume | 14 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2012 Aug |
Keywords
- Fault diagnosis
- Machine vibration
- Multiscale
- Multiscale permutation entropy
- Permutation entropy
- Support vector machine
ASJC Scopus subject areas
- Information Systems
- Electrical and Electronic Engineering
- General Physics and Astronomy
- Mathematical Physics
- Physics and Astronomy (miscellaneous)