TY - JOUR
T1 - Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy
AU - Chien, Chiang Ting
AU - Shyue, Song Kuen
AU - Lai, Ming Kuen
PY - 2007/11
Y1 - 2007/11
N2 - BACKGROUND. Apoptosis and autophagy may contribute to cell homeostasis in the kidney subjected to ischemia/reperfusion injury via mitochondrial injury. Ischemia/reperfusion induces differential sensitivity between proximal and distal tubules via a dissociated Bcl-xL expression. We hypothesized Bcl-xL augmentation in the proximal and distal tubules may potentially reduce ischemia/reperfusion induced renal dysfunction. METHODS. We augmented Bcl-xL protein expression in the kidney with intrarenal adenoviral bcl-xL gene transfer and evaluated the potential effect of Bcl-xL augmentation on ischemia/reperfusion induced renal oxidative stress, apoptosis, and autophagy in the rat. RESULTS. Intrarenal arterial Adv-bcl-xL administration augmented maximal Bcl-xL protein expression of rat kidney after 7 days of transfection. The primary location of Bcl-xL augmentation was found in proximal and distal tubules, but not in glomeruli. Ischemia/reperfusion increased mitochondrial cytochrome C release, renal O2 level and renal 3-nitrosine and 4-hydroxyneonal accumulation, potentiated tubular apoptosis and autophagy, including increase in microtubule-associated protein 1 light chain 3 (LC-3) and Beclin-1 expression, Bax/Bcl-xL ratio, caspase 3 expression and poly-(ADP-ribose)-polymerase fragments, and subsequent proximal and distal tubular apoptosis/autophagy. However, Adv-bcl-xL administration significantly reduced ischemia/reperfusion enhanced mitochondrial cytochrome C release, O2 production, 3-nitrotyrosine and 4-hydroxynonenal accumulation, Beclin-1 expression, Bax/Bcl-xL ratio, and proximal and distal tubular apoptosis/autophagy, consequently improving renal dysfunction. Further study showed that Bcl-xL augmentation was more efficiently than Bcl-2 augmentation in amelioration of ischemia/reperfusion induced proximal and distal tubular apoptosis and renal dysfunction. CONCLUSIONS. Our results suggest that Adv-bcl-xL gene transfer significantly improves ischemia/reperfusion-induced renal dysfunction via the downregulation of renal tubular apoptosis and autophagy.
AB - BACKGROUND. Apoptosis and autophagy may contribute to cell homeostasis in the kidney subjected to ischemia/reperfusion injury via mitochondrial injury. Ischemia/reperfusion induces differential sensitivity between proximal and distal tubules via a dissociated Bcl-xL expression. We hypothesized Bcl-xL augmentation in the proximal and distal tubules may potentially reduce ischemia/reperfusion induced renal dysfunction. METHODS. We augmented Bcl-xL protein expression in the kidney with intrarenal adenoviral bcl-xL gene transfer and evaluated the potential effect of Bcl-xL augmentation on ischemia/reperfusion induced renal oxidative stress, apoptosis, and autophagy in the rat. RESULTS. Intrarenal arterial Adv-bcl-xL administration augmented maximal Bcl-xL protein expression of rat kidney after 7 days of transfection. The primary location of Bcl-xL augmentation was found in proximal and distal tubules, but not in glomeruli. Ischemia/reperfusion increased mitochondrial cytochrome C release, renal O2 level and renal 3-nitrosine and 4-hydroxyneonal accumulation, potentiated tubular apoptosis and autophagy, including increase in microtubule-associated protein 1 light chain 3 (LC-3) and Beclin-1 expression, Bax/Bcl-xL ratio, caspase 3 expression and poly-(ADP-ribose)-polymerase fragments, and subsequent proximal and distal tubular apoptosis/autophagy. However, Adv-bcl-xL administration significantly reduced ischemia/reperfusion enhanced mitochondrial cytochrome C release, O2 production, 3-nitrotyrosine and 4-hydroxynonenal accumulation, Beclin-1 expression, Bax/Bcl-xL ratio, and proximal and distal tubular apoptosis/autophagy, consequently improving renal dysfunction. Further study showed that Bcl-xL augmentation was more efficiently than Bcl-2 augmentation in amelioration of ischemia/reperfusion induced proximal and distal tubular apoptosis and renal dysfunction. CONCLUSIONS. Our results suggest that Adv-bcl-xL gene transfer significantly improves ischemia/reperfusion-induced renal dysfunction via the downregulation of renal tubular apoptosis and autophagy.
KW - Adenoviral bcl-xL
KW - Apoptosis
KW - Autophagy
KW - Ischemia/reperfusion
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=36249011527&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36249011527&partnerID=8YFLogxK
U2 - 10.1097/01.tp.0000287334.38933.e3
DO - 10.1097/01.tp.0000287334.38933.e3
M3 - Article
C2 - 17998875
AN - SCOPUS:36249011527
SN - 0041-1337
VL - 84
SP - 1183
EP - 1190
JO - Transplantation
JF - Transplantation
IS - 9
ER -