TY - JOUR
T1 - Bat point counts
T2 - A novel sampling method shines light on flying bat communities
AU - Darras, Kevin Felix Arno
AU - Yusti, Ellena
AU - Huang, Joe Chun Chia
AU - Zemp, Delphine Clara
AU - Kartono, Agus Priyono
AU - Wanger, Thomas Cherico
N1 - Publisher Copyright:
© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
PY - 2021/12
Y1 - 2021/12
N2 - Emerging technologies based on the detection of electro-magnetic energy offer promising opportunities for sampling biodiversity. We exploit their potential by showing here how they can be used in bat point counts—a novel method to sample flying bats—to overcome shortcomings of traditional sampling methods, and to maximize sampling coverage and taxonomic resolution of this elusive taxon with minimal sampling bias. We conducted bat point counts with a sampling rig combining a thermal scope to detect bats, an ultrasound recorder to obtain echolocation calls, and a near-infrared camera to capture bat morphology. We identified bats with a dedicated identification key combining acoustic and morphological features, and compared bat point counts with the standard bat sampling methods of mist-netting and automated ultrasound recording in three oil palm plantation sites in Indonesia, over nine survey nights. Based on rarefaction and extrapolation sampling curves, bat point counts were similarly effective but more time-efficient than the established methods for sampling the oil palm species pool in our study. Point counts sampled species that tend to avoid nets and those that are not echolocating, and thus cannot be detected acoustically. We identified some bat sonotypes with near-infrared imagery, and bat point counts revealed strong sampling biases in previous studies using capture-based methods, suggesting similar biases in other regions might exist. Our method should be tested in a wider range of habitats and regions to assess its performance. However, while capture-based methods allow to identify bats with absolute and internal morphometry, and unattended ultrasound recorders can effectively sample echolocating bats, bat point counts are a promising, non-invasive, and potentially competitive new tool for sampling all flying bats without bias and observing their behavior in the wild.
AB - Emerging technologies based on the detection of electro-magnetic energy offer promising opportunities for sampling biodiversity. We exploit their potential by showing here how they can be used in bat point counts—a novel method to sample flying bats—to overcome shortcomings of traditional sampling methods, and to maximize sampling coverage and taxonomic resolution of this elusive taxon with minimal sampling bias. We conducted bat point counts with a sampling rig combining a thermal scope to detect bats, an ultrasound recorder to obtain echolocation calls, and a near-infrared camera to capture bat morphology. We identified bats with a dedicated identification key combining acoustic and morphological features, and compared bat point counts with the standard bat sampling methods of mist-netting and automated ultrasound recording in three oil palm plantation sites in Indonesia, over nine survey nights. Based on rarefaction and extrapolation sampling curves, bat point counts were similarly effective but more time-efficient than the established methods for sampling the oil palm species pool in our study. Point counts sampled species that tend to avoid nets and those that are not echolocating, and thus cannot be detected acoustically. We identified some bat sonotypes with near-infrared imagery, and bat point counts revealed strong sampling biases in previous studies using capture-based methods, suggesting similar biases in other regions might exist. Our method should be tested in a wider range of habitats and regions to assess its performance. However, while capture-based methods allow to identify bats with absolute and internal morphometry, and unattended ultrasound recorders can effectively sample echolocating bats, bat point counts are a promising, non-invasive, and potentially competitive new tool for sampling all flying bats without bias and observing their behavior in the wild.
KW - biodiversity sampling
KW - Chiroptera
KW - near-infrared
KW - point count
KW - thermal
KW - ultrasound
UR - http://www.scopus.com/inward/record.url?scp=85120175951&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120175951&partnerID=8YFLogxK
U2 - 10.1002/ece3.8356
DO - 10.1002/ece3.8356
M3 - Article
AN - SCOPUS:85120175951
SN - 2045-7758
VL - 11
SP - 17179
EP - 17190
JO - Ecology and Evolution
JF - Ecology and Evolution
IS - 23
ER -