Associative mapping network without redundant local minima

Ja Ling Wu, Yuen Shien Tseng

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


When neural networks are used for associative memory or associative mapping, there always exist in their corresponding energy functions unexpected local minima to which networks may converge. These unexpected local minima, corresponding to spurious outputs or crosstalks, are caused by improperly distributed stored patterns, especially those that are not mutually orthogonal or not linearly independent. An associative mapping network, named the correlation network, is thus proposed to solve this problem. This non-linear network directly accesses its stored patterns and does not require high-order dimension expansion, by introducing the thresholds which carry the correlating information among stored patterns. Furthermore, correlation networks would never have redundant local minima in their energy functions for any pattern stored in the network.

Original languageEnglish
Pages (from-to)899-916
Number of pages18
JournalInternational Journal of Electronics
Issue number6
Publication statusPublished - 1991 Dec
Externally publishedYes

ASJC Scopus subject areas

  • Electrical and Electronic Engineering


Dive into the research topics of 'Associative mapping network without redundant local minima'. Together they form a unique fingerprint.

Cite this