Analysis of STCC eddies using the Okubo-Weiss parameter on model and satellite data Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17-20 June 2013

Yu-Lin Chang, Lie Yauw Oey

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

The North Pacific Subtropical Counter Current (STCC) is a weak zonal current comprising of a weak eastward flow near the surface (with speeds of less than 0.1 m/s and a thickness of approximately 50-100 m) and westward flow (the North Equatorial Current) beneath. Previous studies (e.g., Qiu J Phys Oceanogr 29: 2471-2486, 1999) have shown that the STCC is baroclinically unstable. Therefore, despite its weak mean speeds, nonlinear STCC eddies with diameters ~300 km or larger and rotational speeds exceeding the eddy propagation speeds develop (Samelson J Phys Oceanogr 27: 2645-2662, 1997; Chelton et al. Prog Oceanogr 91: 167-216, 2011). In this study, the authors present numerical experiments to describe and explain the instability and eddy-generation processes of the STCC and the seasonal variation. Emphasis is on finite-amplitude eddies which are analyzed based on the parameter of Okubo (Deep-Sea Res 17: 445-454, 1970) and Weiss (Physica D 48: 273-294, 1991). The temperature and salinity distribution in March and April offer the favorable condition for eddies to grow, while September and October are unfavorable seasons for the generation of eddies. STCC is maintained not only by subsurface front but also by the sea surface temperature (SST) front. The seasonal variation of the vertical shear is dominated by the seasonal surface STCC velocity. The SST front enhances the instability and lead to the faster growth of STCC eddies in winter and spring. The near-surface processes are therefore crucial for the STCC system.

Original languageEnglish
Pages (from-to)259-271
Number of pages13
JournalOcean Dynamics
Volume64
Issue number2
DOIs
Publication statusPublished - 2014 Feb 1

Fingerprint

countercurrent
satellite data
eddy
ocean
modeling
sea surface temperature
seasonal variation
parameter
analysis
current velocity
deep sea
salinity
speed
winter

Keywords

  • Eddy
  • Okubo-Weiss method
  • STCC

ASJC Scopus subject areas

  • Oceanography

Cite this

@article{6a5fa653cf094a46a4bdc08c232266e7,
title = "Analysis of STCC eddies using the Okubo-Weiss parameter on model and satellite data Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17-20 June 2013",
abstract = "The North Pacific Subtropical Counter Current (STCC) is a weak zonal current comprising of a weak eastward flow near the surface (with speeds of less than 0.1 m/s and a thickness of approximately 50-100 m) and westward flow (the North Equatorial Current) beneath. Previous studies (e.g., Qiu J Phys Oceanogr 29: 2471-2486, 1999) have shown that the STCC is baroclinically unstable. Therefore, despite its weak mean speeds, nonlinear STCC eddies with diameters ~300 km or larger and rotational speeds exceeding the eddy propagation speeds develop (Samelson J Phys Oceanogr 27: 2645-2662, 1997; Chelton et al. Prog Oceanogr 91: 167-216, 2011). In this study, the authors present numerical experiments to describe and explain the instability and eddy-generation processes of the STCC and the seasonal variation. Emphasis is on finite-amplitude eddies which are analyzed based on the parameter of Okubo (Deep-Sea Res 17: 445-454, 1970) and Weiss (Physica D 48: 273-294, 1991). The temperature and salinity distribution in March and April offer the favorable condition for eddies to grow, while September and October are unfavorable seasons for the generation of eddies. STCC is maintained not only by subsurface front but also by the sea surface temperature (SST) front. The seasonal variation of the vertical shear is dominated by the seasonal surface STCC velocity. The SST front enhances the instability and lead to the faster growth of STCC eddies in winter and spring. The near-surface processes are therefore crucial for the STCC system.",
keywords = "Eddy, Okubo-Weiss method, STCC",
author = "Yu-Lin Chang and Oey, {Lie Yauw}",
year = "2014",
month = "2",
day = "1",
doi = "10.1007/s10236-013-0680-7",
language = "English",
volume = "64",
pages = "259--271",
journal = "Ocean Dynamics",
issn = "1616-7341",
publisher = "Springer Verlag",
number = "2",

}

TY - JOUR

T1 - Analysis of STCC eddies using the Okubo-Weiss parameter on model and satellite data Topical Collection on the 5th International Workshop on Modelling the Ocean (IWMO) in Bergen, Norway 17-20 June 2013

AU - Chang, Yu-Lin

AU - Oey, Lie Yauw

PY - 2014/2/1

Y1 - 2014/2/1

N2 - The North Pacific Subtropical Counter Current (STCC) is a weak zonal current comprising of a weak eastward flow near the surface (with speeds of less than 0.1 m/s and a thickness of approximately 50-100 m) and westward flow (the North Equatorial Current) beneath. Previous studies (e.g., Qiu J Phys Oceanogr 29: 2471-2486, 1999) have shown that the STCC is baroclinically unstable. Therefore, despite its weak mean speeds, nonlinear STCC eddies with diameters ~300 km or larger and rotational speeds exceeding the eddy propagation speeds develop (Samelson J Phys Oceanogr 27: 2645-2662, 1997; Chelton et al. Prog Oceanogr 91: 167-216, 2011). In this study, the authors present numerical experiments to describe and explain the instability and eddy-generation processes of the STCC and the seasonal variation. Emphasis is on finite-amplitude eddies which are analyzed based on the parameter of Okubo (Deep-Sea Res 17: 445-454, 1970) and Weiss (Physica D 48: 273-294, 1991). The temperature and salinity distribution in March and April offer the favorable condition for eddies to grow, while September and October are unfavorable seasons for the generation of eddies. STCC is maintained not only by subsurface front but also by the sea surface temperature (SST) front. The seasonal variation of the vertical shear is dominated by the seasonal surface STCC velocity. The SST front enhances the instability and lead to the faster growth of STCC eddies in winter and spring. The near-surface processes are therefore crucial for the STCC system.

AB - The North Pacific Subtropical Counter Current (STCC) is a weak zonal current comprising of a weak eastward flow near the surface (with speeds of less than 0.1 m/s and a thickness of approximately 50-100 m) and westward flow (the North Equatorial Current) beneath. Previous studies (e.g., Qiu J Phys Oceanogr 29: 2471-2486, 1999) have shown that the STCC is baroclinically unstable. Therefore, despite its weak mean speeds, nonlinear STCC eddies with diameters ~300 km or larger and rotational speeds exceeding the eddy propagation speeds develop (Samelson J Phys Oceanogr 27: 2645-2662, 1997; Chelton et al. Prog Oceanogr 91: 167-216, 2011). In this study, the authors present numerical experiments to describe and explain the instability and eddy-generation processes of the STCC and the seasonal variation. Emphasis is on finite-amplitude eddies which are analyzed based on the parameter of Okubo (Deep-Sea Res 17: 445-454, 1970) and Weiss (Physica D 48: 273-294, 1991). The temperature and salinity distribution in March and April offer the favorable condition for eddies to grow, while September and October are unfavorable seasons for the generation of eddies. STCC is maintained not only by subsurface front but also by the sea surface temperature (SST) front. The seasonal variation of the vertical shear is dominated by the seasonal surface STCC velocity. The SST front enhances the instability and lead to the faster growth of STCC eddies in winter and spring. The near-surface processes are therefore crucial for the STCC system.

KW - Eddy

KW - Okubo-Weiss method

KW - STCC

UR - http://www.scopus.com/inward/record.url?scp=84894041434&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84894041434&partnerID=8YFLogxK

U2 - 10.1007/s10236-013-0680-7

DO - 10.1007/s10236-013-0680-7

M3 - Article

AN - SCOPUS:84894041434

VL - 64

SP - 259

EP - 271

JO - Ocean Dynamics

JF - Ocean Dynamics

SN - 1616-7341

IS - 2

ER -