An updated examination of the Luzon Strait transport

Yi Chia Hsin, Chau-Ron Wu, Shenn Yu Chao

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

Despite numerous previous estimates of Luzon Strait transport (LST), we attempt an update using a fine-resolution model. With these improvements, the circulation in and around Luzon Strait shows up rather realistically. Intrusion of a Kuroshio meander into the South China Sea (SCS) is seasonally varying. The LST, especially in the upper ocean, caused by a small difference between the large meander inflow and outflow, is also seasonally varying and subject to large standard deviation. The annual mean LST is estimated to be westward (-4.0 ± 5.1 Sv) along 120.75°E. We have also conducted process of elimination experiments to assess the relative importance of open ocean inflow/outflow, wind stress, and surface heat flux in regulating LST and its seasonality. The East Asian monsoon winds stand out as the predominant forcing. Without it, the upper ocean LST changes from westward to eastward (ranging up to 4 Sv) and, with misaligned seasonality, triggering an inflow from the Mindoro Strait to the SCS to replenish the water mass loss. Discounting monsoon winds, sea level in the Sulu Sea is generally higher because it receives the Indonesian Throughflow before the SCS, which causes an inflow from the Sulu Sea to the SCS. On the other hand, the annual mean wind from the northeast invites outflow from the SCS to the Sulu Sea (or inflow from the Luzon Strait). Weighing the two competing factors together, we see the cessation of northeast monsoon as a condition favorable for the Luzon Strait outflow or the Mindoro Strait inflow.

Original languageEnglish
Article numberC03022
JournalJournal of Geophysical Research: Oceans
Volume117
Issue number3
DOIs
Publication statusPublished - 2012 Jan 1

Fingerprint

straits
South China Sea
strait
examination
inflow
Wind stress
oceans
China
Sea level
Weighing
monsoons
outflow
Heat flux
meanders
monsoon
meander
upper ocean
Water
sea level
seasonality

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this

An updated examination of the Luzon Strait transport. / Hsin, Yi Chia; Wu, Chau-Ron; Chao, Shenn Yu.

In: Journal of Geophysical Research: Oceans, Vol. 117, No. 3, C03022, 01.01.2012.

Research output: Contribution to journalArticle

@article{a9644fa7eb19464cbf2b2c11a6462451,
title = "An updated examination of the Luzon Strait transport",
abstract = "Despite numerous previous estimates of Luzon Strait transport (LST), we attempt an update using a fine-resolution model. With these improvements, the circulation in and around Luzon Strait shows up rather realistically. Intrusion of a Kuroshio meander into the South China Sea (SCS) is seasonally varying. The LST, especially in the upper ocean, caused by a small difference between the large meander inflow and outflow, is also seasonally varying and subject to large standard deviation. The annual mean LST is estimated to be westward (-4.0 ± 5.1 Sv) along 120.75°E. We have also conducted process of elimination experiments to assess the relative importance of open ocean inflow/outflow, wind stress, and surface heat flux in regulating LST and its seasonality. The East Asian monsoon winds stand out as the predominant forcing. Without it, the upper ocean LST changes from westward to eastward (ranging up to 4 Sv) and, with misaligned seasonality, triggering an inflow from the Mindoro Strait to the SCS to replenish the water mass loss. Discounting monsoon winds, sea level in the Sulu Sea is generally higher because it receives the Indonesian Throughflow before the SCS, which causes an inflow from the Sulu Sea to the SCS. On the other hand, the annual mean wind from the northeast invites outflow from the SCS to the Sulu Sea (or inflow from the Luzon Strait). Weighing the two competing factors together, we see the cessation of northeast monsoon as a condition favorable for the Luzon Strait outflow or the Mindoro Strait inflow.",
author = "Hsin, {Yi Chia} and Chau-Ron Wu and Chao, {Shenn Yu}",
year = "2012",
month = "1",
day = "1",
doi = "10.1029/2011JC007714",
language = "English",
volume = "117",
journal = "Quaternary International",
issn = "1040-6182",
publisher = "Elsevier Limited",
number = "3",

}

TY - JOUR

T1 - An updated examination of the Luzon Strait transport

AU - Hsin, Yi Chia

AU - Wu, Chau-Ron

AU - Chao, Shenn Yu

PY - 2012/1/1

Y1 - 2012/1/1

N2 - Despite numerous previous estimates of Luzon Strait transport (LST), we attempt an update using a fine-resolution model. With these improvements, the circulation in and around Luzon Strait shows up rather realistically. Intrusion of a Kuroshio meander into the South China Sea (SCS) is seasonally varying. The LST, especially in the upper ocean, caused by a small difference between the large meander inflow and outflow, is also seasonally varying and subject to large standard deviation. The annual mean LST is estimated to be westward (-4.0 ± 5.1 Sv) along 120.75°E. We have also conducted process of elimination experiments to assess the relative importance of open ocean inflow/outflow, wind stress, and surface heat flux in regulating LST and its seasonality. The East Asian monsoon winds stand out as the predominant forcing. Without it, the upper ocean LST changes from westward to eastward (ranging up to 4 Sv) and, with misaligned seasonality, triggering an inflow from the Mindoro Strait to the SCS to replenish the water mass loss. Discounting monsoon winds, sea level in the Sulu Sea is generally higher because it receives the Indonesian Throughflow before the SCS, which causes an inflow from the Sulu Sea to the SCS. On the other hand, the annual mean wind from the northeast invites outflow from the SCS to the Sulu Sea (or inflow from the Luzon Strait). Weighing the two competing factors together, we see the cessation of northeast monsoon as a condition favorable for the Luzon Strait outflow or the Mindoro Strait inflow.

AB - Despite numerous previous estimates of Luzon Strait transport (LST), we attempt an update using a fine-resolution model. With these improvements, the circulation in and around Luzon Strait shows up rather realistically. Intrusion of a Kuroshio meander into the South China Sea (SCS) is seasonally varying. The LST, especially in the upper ocean, caused by a small difference between the large meander inflow and outflow, is also seasonally varying and subject to large standard deviation. The annual mean LST is estimated to be westward (-4.0 ± 5.1 Sv) along 120.75°E. We have also conducted process of elimination experiments to assess the relative importance of open ocean inflow/outflow, wind stress, and surface heat flux in regulating LST and its seasonality. The East Asian monsoon winds stand out as the predominant forcing. Without it, the upper ocean LST changes from westward to eastward (ranging up to 4 Sv) and, with misaligned seasonality, triggering an inflow from the Mindoro Strait to the SCS to replenish the water mass loss. Discounting monsoon winds, sea level in the Sulu Sea is generally higher because it receives the Indonesian Throughflow before the SCS, which causes an inflow from the Sulu Sea to the SCS. On the other hand, the annual mean wind from the northeast invites outflow from the SCS to the Sulu Sea (or inflow from the Luzon Strait). Weighing the two competing factors together, we see the cessation of northeast monsoon as a condition favorable for the Luzon Strait outflow or the Mindoro Strait inflow.

UR - http://www.scopus.com/inward/record.url?scp=84863389842&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863389842&partnerID=8YFLogxK

U2 - 10.1029/2011JC007714

DO - 10.1029/2011JC007714

M3 - Article

AN - SCOPUS:84863389842

VL - 117

JO - Quaternary International

JF - Quaternary International

SN - 1040-6182

IS - 3

M1 - C03022

ER -