An ultra sensitive DNA detection by using gold nanoparticle multilayer in nano-gap electrodes

Chien Ying Tsai, Tien Li Chang, Chun Chi Chen, Fu Hsiang Ko, Ping Hei Chen*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

31 Citations (Scopus)


This paper reports an electrical DNA detection method that detects target DNA at concentrations as low as 1 fM by using self-assembly multilayer gold nanoparticle structure between nano-gap electrodes. The distance of the gap between the electrodes is 300 nm and the height of the electrodes is 65 nm. A multilayer gold nanoparticle structure can be built on thin film of SiO 2 silicon wafer. Bifunctional organic molecules are used to build up gold nanoparticle monolayer on the wafer substrate. After hybridization among target DNA, 5′-end thiol-modified probe DNA and 3′-end thiol-modified capture DNA; a second layer of gold nanoparticle is built up through a self-assembly process between gold nanoparticles and thiol-modified end of probe DNA. When the applied voltage is the same, electrical current through multilayer gold nanoparticle structure is much greater than that through monolayered gold nanoparticle structure. Therefore, target DNA in sample solution can be detected through a significant degradation in electrical resistance from monolayered gold nanoparticle to multilayer gold nanoparticle structures. The concentration of target DNA in tested sample solutions ranges from 1 fM to 100 pM. The linear I-V curves of multilayer gold nanoparticle structures indicate the device proposed in this study can detect target DNA concentrations as low as 1 fM. Additional approaches are also suggested in this study to improve the sensitivity in DNA detection by using I-V measurements through multilayer gold nanoparticle structures.

Original languageEnglish
Pages (from-to)546-555
Number of pages10
JournalMicroelectronic Engineering
Issue number1-4
Publication statusPublished - 2005 Mar
Externally publishedYes
EventProceedings of the 30th International Conference on Micro- and Nano-Engineering -
Duration: 2004 Sept 192004 Sept 22


  • Bifunctional organic molecules
  • DNA detection
  • Gold nanoparticles
  • Monolayer
  • Multilayer
  • Self-assembly

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering


Dive into the research topics of 'An ultra sensitive DNA detection by using gold nanoparticle multilayer in nano-gap electrodes'. Together they form a unique fingerprint.

Cite this