Abstract
An integrated cobalt disulfide (CoS2) co-catalyst passivation layer on Si microwires (MWs) was used as a photocathode for solar hydrogen evolution. Si MWs were prepared by photolithography and dry etching techniques. The CoS2-Si photocathodes were subsequently prepared by chemical deposition and thermal sulfidation of the Co(OH)2 outer shell. The optimized onset potential and photocurrent of the CoS2-Si electrode were 0.248 V and -3.22 mA cm-2 (at 0 V), respectively. The best photocatalytic activity of the CoS2-Si electrode resulted from lower charge transfer resistances among the photoabsorber, co-catalyst, and redox couples in the electrolyte. X-ray absorption near edge structure was conducted to investigate the unoccupied electronic states of the CoS2 layer. We propose that more vacancies in the S-3p unoccupied states of the CoS2-Si electrode were present with a lower negative charge of S22- to form weaker S-H bond strength, promoting water splitting efficiency. Moreover, the CoS2 co-catalyst that completely covered underlying Si MWs served as a passivation layer to prevent oxidation and reduce degradation during photoelectrochemical measurements. Therefore, the optimal CoS2-Si electrode maintained the photocurrent at about -3 mA cm-2 (at 0 V) for 9 h, and its hydrogen generation rate was approximately 0.833 μmol min-1.
Original language | English |
---|---|
Pages (from-to) | 23466-23476 |
Number of pages | 11 |
Journal | Journal of Materials Chemistry A |
Volume | 3 |
Issue number | 46 |
DOIs | |
Publication status | Published - 2015 |
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science