An analysis of Web image queries for search

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

This study examines the differences between Web image and textual queries, and attempts to develop an analytic model to investigate their implications for Web image retrieval systems. A large number of Web queries from image and textual search engines were analyzed and compared based on their factual characteristics, query types, and search interests. A feasible analytic model employing the concepts of uniqueness and refinement was adapted to categorize query types and analyze the characteristics of failed queries. Useful results include the findings that image requests may have higher specificity and contain more refined queries (especially among failed queries), and that the queries were refined more by interpretive attributes than by reactive and perceptual attributes. Current text retrieval technology Is not capable of fulfilling such complex image requests. It is suggested that there is a need to increase the number of appropriate annotations for Web images and to utilize more advanced retrieval techniques for more effective Web image searching. Few previous large-scale studies have investigated visual information retrieval using image search engines. Thus, this study provides results that might enhance our understanding of Web image searching behavior and suggests implications for the improvement of current Web image search engines.

Original languageEnglish
Pages (from-to)340-348
Number of pages9
JournalProceedings of the ASIST Annual Meeting
Volume40
DOIs
Publication statusPublished - 2003 Oct 1

Fingerprint

Search engines
World Wide Web
Image retrieval
Information retrieval
search engine
information retrieval

ASJC Scopus subject areas

  • Information Systems
  • Library and Information Sciences

Cite this

An analysis of Web image queries for search. / Pu, Hsiao-Tieh.

In: Proceedings of the ASIST Annual Meeting, Vol. 40, 01.10.2003, p. 340-348.

Research output: Contribution to journalArticle

@article{121638d17bdd40f8801205e7021c99fc,
title = "An analysis of Web image queries for search",
abstract = "This study examines the differences between Web image and textual queries, and attempts to develop an analytic model to investigate their implications for Web image retrieval systems. A large number of Web queries from image and textual search engines were analyzed and compared based on their factual characteristics, query types, and search interests. A feasible analytic model employing the concepts of uniqueness and refinement was adapted to categorize query types and analyze the characteristics of failed queries. Useful results include the findings that image requests may have higher specificity and contain more refined queries (especially among failed queries), and that the queries were refined more by interpretive attributes than by reactive and perceptual attributes. Current text retrieval technology Is not capable of fulfilling such complex image requests. It is suggested that there is a need to increase the number of appropriate annotations for Web images and to utilize more advanced retrieval techniques for more effective Web image searching. Few previous large-scale studies have investigated visual information retrieval using image search engines. Thus, this study provides results that might enhance our understanding of Web image searching behavior and suggests implications for the improvement of current Web image search engines.",
author = "Hsiao-Tieh Pu",
year = "2003",
month = "10",
day = "1",
doi = "10.1002/meet.1450400142",
language = "English",
volume = "40",
pages = "340--348",
journal = "Proceedings of the ASIST Annual Meeting",
issn = "1550-8390",
publisher = "Learned Information",

}

TY - JOUR

T1 - An analysis of Web image queries for search

AU - Pu, Hsiao-Tieh

PY - 2003/10/1

Y1 - 2003/10/1

N2 - This study examines the differences between Web image and textual queries, and attempts to develop an analytic model to investigate their implications for Web image retrieval systems. A large number of Web queries from image and textual search engines were analyzed and compared based on their factual characteristics, query types, and search interests. A feasible analytic model employing the concepts of uniqueness and refinement was adapted to categorize query types and analyze the characteristics of failed queries. Useful results include the findings that image requests may have higher specificity and contain more refined queries (especially among failed queries), and that the queries were refined more by interpretive attributes than by reactive and perceptual attributes. Current text retrieval technology Is not capable of fulfilling such complex image requests. It is suggested that there is a need to increase the number of appropriate annotations for Web images and to utilize more advanced retrieval techniques for more effective Web image searching. Few previous large-scale studies have investigated visual information retrieval using image search engines. Thus, this study provides results that might enhance our understanding of Web image searching behavior and suggests implications for the improvement of current Web image search engines.

AB - This study examines the differences between Web image and textual queries, and attempts to develop an analytic model to investigate their implications for Web image retrieval systems. A large number of Web queries from image and textual search engines were analyzed and compared based on their factual characteristics, query types, and search interests. A feasible analytic model employing the concepts of uniqueness and refinement was adapted to categorize query types and analyze the characteristics of failed queries. Useful results include the findings that image requests may have higher specificity and contain more refined queries (especially among failed queries), and that the queries were refined more by interpretive attributes than by reactive and perceptual attributes. Current text retrieval technology Is not capable of fulfilling such complex image requests. It is suggested that there is a need to increase the number of appropriate annotations for Web images and to utilize more advanced retrieval techniques for more effective Web image searching. Few previous large-scale studies have investigated visual information retrieval using image search engines. Thus, this study provides results that might enhance our understanding of Web image searching behavior and suggests implications for the improvement of current Web image search engines.

UR - http://www.scopus.com/inward/record.url?scp=28044442403&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=28044442403&partnerID=8YFLogxK

U2 - 10.1002/meet.1450400142

DO - 10.1002/meet.1450400142

M3 - Article

AN - SCOPUS:28044442403

VL - 40

SP - 340

EP - 348

JO - Proceedings of the ASIST Annual Meeting

JF - Proceedings of the ASIST Annual Meeting

SN - 1550-8390

ER -