Adsorption and reaction of C 2N 2 on Si(100)-2×1: A computational study with singleand double-dimer cluster models

Jeng Hari Wang, M. C. Lin

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

The adsorption and decomposition of C 2N 2 on the Si(100)-2×1 surface have been calculated by the hybrid density functional B3L YP method with Si 9H 12 and Si 15H 16 as single- and double-dimer models, respectively. The result of our single-dimer surface model calculation shows that the surface reaction started from a single N atom of C 2N 2 molecularly adsorbed on one silicon atom of the dimer. From the result of bond distance changes and vibrational frequency analysis, this process occurs by direct interaction of the CΞN group with a silicon dangling bond. Two different reaction paths follow; the first path occurs by the adjoined carbon atom adsorption producing four-member-ring product -Si-N-C-(CN)Si-, similar to the HCN molecule adsorbing sideway on this surface. The other path occurs by the adsorption of the second nitrogen atom with another Si atom producing a six-member-ring product, -Si-N-C-C-N-Si-. The mechanisms for the decomposition of these adsorbates have been elucidated. The result of our calculation with the double-dimer surface model reveals that the reaction barriers are somewhat lower than single-dimer system for either CC or CN bond-breaking processes but with a similar trend. The predicted stabilities of various surface species from physisorbed C 2N 2 to chemisorbed CN radicals and silicon nitride and silicon carbide are consistent with the results of our previous studies using HREELS, XPS, UPS, and TPD methods as well as with others' data for similar reactions of CN-containing species with the Si(100)-2×1 surface. The predicted result for adsorption of two C 2N 2 based on both surface models indicates a significant decrease in the adsorption energy for the second C 2N 2 molecule.

Original languageEnglish
Pages (from-to)9189-9197
Number of pages9
JournalJournal of Physical Chemistry B
Volume108
Issue number26
DOIs
Publication statusPublished - 2004 Jul 1

Fingerprint

Dimers
dimers
Adsorption
adsorption
Atoms
Silicon
atoms
Decomposition
decomposition
Molecules
Dangling bonds
rings
Surface reactions
silicon
Vibrational spectra
Adsorbates
Temperature programmed desorption
products
Silicon nitride
silicon nitrides

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Cite this

Adsorption and reaction of C 2N 2 on Si(100)-2×1 : A computational study with singleand double-dimer cluster models. / Wang, Jeng Hari; Lin, M. C.

In: Journal of Physical Chemistry B, Vol. 108, No. 26, 01.07.2004, p. 9189-9197.

Research output: Contribution to journalArticle

@article{76e2e79ee2e9413c83b5d96bae0b2681,
title = "Adsorption and reaction of C 2N 2 on Si(100)-2×1: A computational study with singleand double-dimer cluster models",
abstract = "The adsorption and decomposition of C 2N 2 on the Si(100)-2×1 surface have been calculated by the hybrid density functional B3L YP method with Si 9H 12 and Si 15H 16 as single- and double-dimer models, respectively. The result of our single-dimer surface model calculation shows that the surface reaction started from a single N atom of C 2N 2 molecularly adsorbed on one silicon atom of the dimer. From the result of bond distance changes and vibrational frequency analysis, this process occurs by direct interaction of the CΞN group with a silicon dangling bond. Two different reaction paths follow; the first path occurs by the adjoined carbon atom adsorption producing four-member-ring product -Si-N-C-(CN)Si-, similar to the HCN molecule adsorbing sideway on this surface. The other path occurs by the adsorption of the second nitrogen atom with another Si atom producing a six-member-ring product, -Si-N-C-C-N-Si-. The mechanisms for the decomposition of these adsorbates have been elucidated. The result of our calculation with the double-dimer surface model reveals that the reaction barriers are somewhat lower than single-dimer system for either CC or CN bond-breaking processes but with a similar trend. The predicted stabilities of various surface species from physisorbed C 2N 2 to chemisorbed CN radicals and silicon nitride and silicon carbide are consistent with the results of our previous studies using HREELS, XPS, UPS, and TPD methods as well as with others' data for similar reactions of CN-containing species with the Si(100)-2×1 surface. The predicted result for adsorption of two C 2N 2 based on both surface models indicates a significant decrease in the adsorption energy for the second C 2N 2 molecule.",
author = "Wang, {Jeng Hari} and Lin, {M. C.}",
year = "2004",
month = "7",
day = "1",
doi = "10.1021/jp0495343",
language = "English",
volume = "108",
pages = "9189--9197",
journal = "Journal of Physical Chemistry B",
issn = "1520-6106",
number = "26",

}

TY - JOUR

T1 - Adsorption and reaction of C 2N 2 on Si(100)-2×1

T2 - A computational study with singleand double-dimer cluster models

AU - Wang, Jeng Hari

AU - Lin, M. C.

PY - 2004/7/1

Y1 - 2004/7/1

N2 - The adsorption and decomposition of C 2N 2 on the Si(100)-2×1 surface have been calculated by the hybrid density functional B3L YP method with Si 9H 12 and Si 15H 16 as single- and double-dimer models, respectively. The result of our single-dimer surface model calculation shows that the surface reaction started from a single N atom of C 2N 2 molecularly adsorbed on one silicon atom of the dimer. From the result of bond distance changes and vibrational frequency analysis, this process occurs by direct interaction of the CΞN group with a silicon dangling bond. Two different reaction paths follow; the first path occurs by the adjoined carbon atom adsorption producing four-member-ring product -Si-N-C-(CN)Si-, similar to the HCN molecule adsorbing sideway on this surface. The other path occurs by the adsorption of the second nitrogen atom with another Si atom producing a six-member-ring product, -Si-N-C-C-N-Si-. The mechanisms for the decomposition of these adsorbates have been elucidated. The result of our calculation with the double-dimer surface model reveals that the reaction barriers are somewhat lower than single-dimer system for either CC or CN bond-breaking processes but with a similar trend. The predicted stabilities of various surface species from physisorbed C 2N 2 to chemisorbed CN radicals and silicon nitride and silicon carbide are consistent with the results of our previous studies using HREELS, XPS, UPS, and TPD methods as well as with others' data for similar reactions of CN-containing species with the Si(100)-2×1 surface. The predicted result for adsorption of two C 2N 2 based on both surface models indicates a significant decrease in the adsorption energy for the second C 2N 2 molecule.

AB - The adsorption and decomposition of C 2N 2 on the Si(100)-2×1 surface have been calculated by the hybrid density functional B3L YP method with Si 9H 12 and Si 15H 16 as single- and double-dimer models, respectively. The result of our single-dimer surface model calculation shows that the surface reaction started from a single N atom of C 2N 2 molecularly adsorbed on one silicon atom of the dimer. From the result of bond distance changes and vibrational frequency analysis, this process occurs by direct interaction of the CΞN group with a silicon dangling bond. Two different reaction paths follow; the first path occurs by the adjoined carbon atom adsorption producing four-member-ring product -Si-N-C-(CN)Si-, similar to the HCN molecule adsorbing sideway on this surface. The other path occurs by the adsorption of the second nitrogen atom with another Si atom producing a six-member-ring product, -Si-N-C-C-N-Si-. The mechanisms for the decomposition of these adsorbates have been elucidated. The result of our calculation with the double-dimer surface model reveals that the reaction barriers are somewhat lower than single-dimer system for either CC or CN bond-breaking processes but with a similar trend. The predicted stabilities of various surface species from physisorbed C 2N 2 to chemisorbed CN radicals and silicon nitride and silicon carbide are consistent with the results of our previous studies using HREELS, XPS, UPS, and TPD methods as well as with others' data for similar reactions of CN-containing species with the Si(100)-2×1 surface. The predicted result for adsorption of two C 2N 2 based on both surface models indicates a significant decrease in the adsorption energy for the second C 2N 2 molecule.

UR - http://www.scopus.com/inward/record.url?scp=3142701483&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3142701483&partnerID=8YFLogxK

U2 - 10.1021/jp0495343

DO - 10.1021/jp0495343

M3 - Article

AN - SCOPUS:3142701483

VL - 108

SP - 9189

EP - 9197

JO - Journal of Physical Chemistry B

JF - Journal of Physical Chemistry B

SN - 1520-6106

IS - 26

ER -