Abstract
Analyses of outputs from an eddy-resolving ocean general circulation model show that there are at least two groups of subthermocline eddies near the Philippine coast: one originates from the southeast, and the other from the east. The dominant period and principal depth of the former (latter) group of eddies are about 55 days (67 days) and 600 m (350 m), respectively. The propagation speed (∼0.12 m s-1) and diameter (∼3°) of the two groups of eddies are similar. We suggest that the westward propagating eddies are generated by interactions between meridional movement of the westward-flowing North Equatorial Current, the eastward-flowing North Equatorial Undercurrent, and their interactions with topography. Besides, the analysis indicates that, in comparison with the northwestward propagating subthermocline eddies, the westward propagating ones play a more important role in modulating the subsurface circulation near the Philippine coast.
Original language | English |
---|---|
Pages (from-to) | 3606-3623 |
Number of pages | 18 |
Journal | Journal of Geophysical Research: Oceans |
Volume | 120 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2015 May 1 |
Keywords
- ocean GCM
- subthermocline eddies
- undercurrent
- western boundary current
ASJC Scopus subject areas
- Geochemistry and Petrology
- Geophysics
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science
- Oceanography