Abstract
AC properties of the flux-line liquid in the anisotropic high-temperature superconducting crystals in a parallel field are theoretically investigated. The ac responses in the simple flux-flow regime are analyzed from associated effective ac-magnetic permeability calculated on the hydrodynamic theory basis. The responses are studied as functions of anisotropic ratio and sample dimensions. The results illustrate the influence of the platelet crystal's size on permeability in the anisotropic superconductors while in the isotropic superconductors, the relationship of responses between a square rod and cylinder is found. It indicates that the permeability of a cylinder can be essentially replaced by that of a square rod and vice versa. The geometric effect on response is also elucidated in the isotropic superconductors.
Original language | English |
---|---|
Pages (from-to) | 147-154 |
Number of pages | 8 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 6 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1996 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering