A Transformer-Based Framework for Tiny Object Detection

Yi Kai Liao, Gong Si Lin, Mei Chen Yeh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper proposes a fully transformer-based method for building an end-to-end model dedicated to tiny object detection. Our approach eliminates the components which are difficult to be designed in detecting tiny objects, such as anchor generation and non-maximum suppression. Additionally, we address the issue of receptive fields for tiny objects in convolutional neural networks through self-attention. The model named Swin-Deformable DEtection TRansformer (SD DETR) integrates Swin Transformer [1] and Deformable DETR [2]. Furthermore, we have introduced architectural enhancements and optimized the loss function to improve the model's ability in detecting tiny objects. Experimental results on the AI-TOD [3] dataset demonstrate that SD DETR achieves 10.9 AP for very tiny objects with only 2 to 4 pixels, showcasing a significant improvement of +1.2 AP compared to the current state-of-the-art model. The code is available at https://github.com/kai271828/SDDERT.

Original languageEnglish
Title of host publication2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages373-377
Number of pages5
ISBN (Electronic)9798350300673
DOIs
Publication statusPublished - 2023
Event2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023 - Taipei, Taiwan
Duration: 2023 Oct 312023 Nov 3

Publication series

Name2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023

Conference

Conference2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023
Country/TerritoryTaiwan
CityTaipei
Period2023/10/312023/11/03

ASJC Scopus subject areas

  • Hardware and Architecture
  • Signal Processing
  • Artificial Intelligence
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A Transformer-Based Framework for Tiny Object Detection'. Together they form a unique fingerprint.

Cite this