A reformatory model incorporating PNGV battery and three-terminal-switch models to design and implement feedback compensations of LiFePO 4 battery chargers

Kai Jun Pai*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

This study developed and implemented a LiFePO 4 battery pack (LBP) rapid charger. Using the three-terminal switch and partnership for a new generation of vehicles (PNGV) battery models, this study could obtain a small-signal system matrix to derive transfer functions and further analyze frequency responses for the charge voltage and current loops; therefore, both voltage and current feedback controllers could be designed to fulfill the constant-voltage (CV) and constant-current (CC) charges. To address practical applications, the proposed equivalent model also considered the wire resistance-inductance of the power cable. According to the derived high-order transfer function, the pole-zero break frequency in the Bode plot was observed that approximated the practical measurement; therefore, the pole-zero compensation could be accomplished for both charge loop requirements. Moreover, the design features for implementing the CV and CC charges are presented in detail herein, and the current overshoot during the start-up phase could be mitigated using the method of zero break frequency shifting and a novel proportional shifting proportional-integral control. The LBP parameter estimations, model construction processes, and frequency response analyses are also presented. The feedback compensation design based on the proposed model was validated through simulations and experiments. The results were determined to be in excellent agreement with theoretical derivations.

Original languageEnglish
Article number126
JournalElectronics (Switzerland)
Volume8
Issue number2
DOIs
Publication statusPublished - 2019 Feb
Externally publishedYes

Keywords

  • PNGV battery model
  • Proportional shifting proportional-integral control
  • Rapid charger
  • Small-signal
  • Three-terminal switch model

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Signal Processing
  • Hardware and Architecture
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A reformatory model incorporating PNGV battery and three-terminal-switch models to design and implement feedback compensations of LiFePO <sub>4</sub> battery chargers'. Together they form a unique fingerprint.

Cite this