Abstract
The authors propose a small-world network model that combines cellular automata with the social mirror identities of daily-contact networks for purposes of performing epidemiological simulations. The social mirror identity concept was established to integrate human long-distance movement and daily visits to fixed locations. After showing that the model is capable of displaying such small-world effects as low degree of separation and relatively high degree of clustering on a societal level, the authors offer proof of its ability to display R 0 properties—considered central to all epidemiological studies. To test their model, they simulated the 2003 severe acute respiratory syndrome (SARS) outbreak.
Original language | English |
---|---|
Pages (from-to) | 671-699 |
Number of pages | 29 |
Journal | Simulation |
Volume | 81 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2005 Oct |
Externally published | Yes |
Keywords
- Social mirror identity
- cellular automata
- multiagent system
- network-based epidemic simulations
- public health policy
- small-world network model
ASJC Scopus subject areas
- Software
- Modelling and Simulation
- Computer Graphics and Computer-Aided Design