TY - GEN
T1 - A novel paragraph embedding method for spoken document summarization
AU - Chen, Kuan Yu
AU - Liu, Shih Hung
AU - Chen, Berlin
AU - Wang, Hsin Min
N1 - Publisher Copyright:
© 2016 Asia Pacific Signal and Information Processing Association.
PY - 2017/1/17
Y1 - 2017/1/17
N2 - Representation learning has emerged as a newly active research subject in many machine learning applications because of its excellent performance. In the context of natural language processing, paragraph (or sentence and document) embedding learning is more suitable/reasonable for some tasks, such as information retrieval and document summarization. However, as far as we are aware, there is only a dearth of research focusing on launching paragraph embedding methods. Extractive spoken document summarization, which can help us browse and digest multimedia data efficiently, aims at selecting a set of indicative sentences from a source document to express the most important theme of the document. A general consensus is that relevance and redundancy are both critical issues in a realistic summarization scenario. However, most of the existing methods focus on determining only the relevance degree between a pair of sentence and document. Motivated by these observations, three major contributions are proposed in this paper. First, we propose a novel unsupervised paragraph embedding method, named the essence vector model, which aims at not only distilling the most representative information from a paragraph but also getting rid of the general background information to produce a more informative low-dimensional vector representation. Second, we incorporate the deduced essence vectors with a density peaks clustering summarization method, which can take both relevance and redundancy information into account simultaneously, to enhance the spoken document summarization performance. Third, the effectiveness of our proposed methods over several well-practiced and state-of-the-art methods is confirmed by extensive spoken document summarization experiments.
AB - Representation learning has emerged as a newly active research subject in many machine learning applications because of its excellent performance. In the context of natural language processing, paragraph (or sentence and document) embedding learning is more suitable/reasonable for some tasks, such as information retrieval and document summarization. However, as far as we are aware, there is only a dearth of research focusing on launching paragraph embedding methods. Extractive spoken document summarization, which can help us browse and digest multimedia data efficiently, aims at selecting a set of indicative sentences from a source document to express the most important theme of the document. A general consensus is that relevance and redundancy are both critical issues in a realistic summarization scenario. However, most of the existing methods focus on determining only the relevance degree between a pair of sentence and document. Motivated by these observations, three major contributions are proposed in this paper. First, we propose a novel unsupervised paragraph embedding method, named the essence vector model, which aims at not only distilling the most representative information from a paragraph but also getting rid of the general background information to produce a more informative low-dimensional vector representation. Second, we incorporate the deduced essence vectors with a density peaks clustering summarization method, which can take both relevance and redundancy information into account simultaneously, to enhance the spoken document summarization performance. Third, the effectiveness of our proposed methods over several well-practiced and state-of-the-art methods is confirmed by extensive spoken document summarization experiments.
UR - http://www.scopus.com/inward/record.url?scp=85013862334&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013862334&partnerID=8YFLogxK
U2 - 10.1109/APSIPA.2016.7820882
DO - 10.1109/APSIPA.2016.7820882
M3 - Conference contribution
AN - SCOPUS:85013862334
T3 - 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
BT - 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
Y2 - 13 December 2016 through 16 December 2016
ER -