Abstract
A model experiment monitoring the fate of total residue oxidant (TRO) in water at a constant temperature and salinity indicated that it decayed exponentially with time, and with TRO decaying faster in seawater than in distilled water. The reduction of TRO by temperature (°K) was found to fit a curvilinear relationship in distilled water (r 2 = 0.997) and a linear relationship in seawater (r 2 = 0.996). Based on the decay rate, flow rate, and the length of cooling water flowing through at a given temperature, the TRO level in the cooling water of a power plant could be estimated using the equation developed in this study. This predictive model would provide a benchmark for power plant operators to adjust the addition of chlorine to levels necessary to control bio-fouling of cooling water intake pipelines, but without irritating ambient marine organisms.
Original language | English |
---|---|
Pages (from-to) | 542-553 |
Number of pages | 12 |
Journal | International journal of molecular sciences |
Volume | 9 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2008 Apr |
Keywords
- Anti-fouling agent
- Cooling water
- Power plant
- Total residual oxidant
ASJC Scopus subject areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry