TY - GEN
T1 - A margin-based discriminative modeling approach for extractive speech summarization
AU - Liu, Shih Hung
AU - Chen, Kuan Yu
AU - Chen, Berlin
AU - Jan, Ea Ee
AU - Wang, Hsin Min
AU - Yen, Hsu Chun
AU - Hsu, Wen Lian
N1 - Publisher Copyright:
© 2014 Asia-Pacific Signal and Information Processing Ass.
PY - 2014/2/12
Y1 - 2014/2/12
N2 - The task of extractive speech summarization is to select a set of salient sentences from an original spoken document and concatenate them to form a summary, facilitating users to better browse through and understand the content of the document. In this paper we present an empirical study of leveraging various supervised discriminative methods for effectively ranking important sentences of a spoken document to be summarized. In addition, we propose a novel margin-based discriminative training (MBDT) algorithm that aims to penalize non-summary sentences in an inverse proportion to their summarization evaluation scores, leading to better discrimination from the desired summary sentences. By doing so, the summarization model can be trained with an objective function that is closely coupled with the ultimate evaluation metric of extractive speech summarization. Furthermore, sentences of spoken documents are embodied by a wide range of prosodie, lexical and relevance features, whose utilities are extensively compared and analyzed. Experiments conducted on a Mandarin broadcast news summarization task demonstrate the performance merits of our summarization method when compared to several well-studied state-of-the-art supervised and unsupervised methods.
AB - The task of extractive speech summarization is to select a set of salient sentences from an original spoken document and concatenate them to form a summary, facilitating users to better browse through and understand the content of the document. In this paper we present an empirical study of leveraging various supervised discriminative methods for effectively ranking important sentences of a spoken document to be summarized. In addition, we propose a novel margin-based discriminative training (MBDT) algorithm that aims to penalize non-summary sentences in an inverse proportion to their summarization evaluation scores, leading to better discrimination from the desired summary sentences. By doing so, the summarization model can be trained with an objective function that is closely coupled with the ultimate evaluation metric of extractive speech summarization. Furthermore, sentences of spoken documents are embodied by a wide range of prosodie, lexical and relevance features, whose utilities are extensively compared and analyzed. Experiments conducted on a Mandarin broadcast news summarization task demonstrate the performance merits of our summarization method when compared to several well-studied state-of-the-art supervised and unsupervised methods.
UR - http://www.scopus.com/inward/record.url?scp=84949925578&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949925578&partnerID=8YFLogxK
U2 - 10.1109/APSIPA.2014.7041591
DO - 10.1109/APSIPA.2014.7041591
M3 - Conference contribution
AN - SCOPUS:84949925578
T3 - 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2014
BT - 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2014
Y2 - 9 December 2014 through 12 December 2014
ER -