A Lightweight Fine-Grained Action Recognition Network for Basketball Foul Detection

Cheng Hung Lin, Min Yen Tsai, Po Yung Chou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

In recent years, deep neural networks for action recognition has attracted extensive attention because of its wide range of applications such as anomaly behavior detection in smart surveillance system. Among the proposed deep learning models, 3DCNN works very well in the action classification of large data sets, including UCF-101, HMDB-51, and Kinetics. However, for the classification of fine-grained actions, current action recognition models still need improvement. The fine-grained action means that the difference from the normal action is very small, and the time of occurrence is extremely short and difficult to distinguish. For example, in the basketball game, the foul action is a kind of fine-grained actions. Foul action recognition is very challenging because fouls in basketball games are always instantaneous and very similar to normal actions. In this paper, we propose a lightweight fine-grained action recognition model for basketball foul detection. Compared with other action recognition models such as two-stream model, 3DCNN, our proposed network has a better effect on this subtle classification task, and is lighter in parameters. The visualized foul feature distribution is concentrated in a few frames that supports our initial hypothesis that fouls always happen instantaneously. Finally, the output of this research can be used to assist in training basketball referees.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665433280
DOIs
Publication statusPublished - 2021
Event8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021 - Penghu, Taiwan
Duration: 2021 Sept 152021 Sept 17

Publication series

Name2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021

Conference

Conference8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
Country/TerritoryTaiwan
CityPenghu
Period2021/09/152021/09/17

Keywords

  • Action recognition
  • Fine-grained
  • Spatio-temporal features
  • Temporal fusion

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Instrumentation

Fingerprint

Dive into the research topics of 'A Lightweight Fine-Grained Action Recognition Network for Basketball Foul Detection'. Together they form a unique fingerprint.

Cite this