Abstract
Planetary gearsets (PGs) are key components widely used in automotive industry to realize power split electronic-continuously variable transmission (e-CVT) hybrid electric vehicles (HEVs) with high energy efficiency as well as satisfactory driving performance. However, a large number of combinations for one or more PGs coupled with several power sources and demanded switching mechanisms make researchers and engineers take time-consuming effort to choose an appropriate one for further development. In this paper, a design methodology in view of the operating characteristics of electric circulation is proposed to sort out all combinations of compound split e-CVT configurations specifically with two single-pinion PGs. Favorable configurations are selected mainly concerning with the existence of power recirculation and characteristics of electric circulation in favor of energy efficiency. Furthermore, a design case is carried out about the performance and fuel economy for a favorable powertrain using simulations under both software and real-time hardware-in-the-loop environments to verify the feasibility of the proposed optimization strategy based on electric circulation. Consequently, the proposed design methodology and classification offer an effective and systematic search, rather than a randomly exhaustive search, for compound split e-CVT hybrid systems, and, furthermore, can be applied to a large-scale design frame including multiple PGs and various powertrain types to achieve a computation-efficient search for the qualified multi-mode power split e-CVT HEVs.
Original language | English |
---|---|
Article number | 120732 |
Journal | Energy |
Volume | 230 |
DOIs | |
Publication status | Published - 2021 Sept 1 |
Keywords
- Compound split
- Electric circulation
- Electronic-continuously variable transmission
- Hardware-in-the-loop
- Hybrid electric vehicle
- Planetary gearsets
- Power split
ASJC Scopus subject areas
- Civil and Structural Engineering
- Building and Construction
- Modelling and Simulation
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Pollution
- General Energy
- Mechanical Engineering
- Industrial and Manufacturing Engineering
- Management, Monitoring, Policy and Law
- Electrical and Electronic Engineering