Abstract
This study proposes and demonstrates a compact synthetic aperture digital holographic microscope (SA-DHM) with mechanical movement-free beam scanning and optimized active aberration compensation. The SA-DHM system is equipped with a phase-only liquid crystal on silicon (LCoS) device as an active optical element to achieve a compact mechanical movement-free beam steering architecture with aberration correction. A rigorous optimization is conducted to modulate the LCoS device using the designed computer-generated holograms (CGH) to generate a high-quality point spread functions (PSF) for a wide range of scanning angles. An accurate aberration correction is studied with and without oil immersed conditions on microscope objective lens. The performance of the proposed method is analyzed with Siemens star target and the results show its potential capability to achieve isotropic resolution enhancement.
Original language | English |
---|---|
Article number | 106251 |
Journal | Optics and Lasers in Engineering |
Volume | 134 |
DOIs | |
Publication status | Published - 2020 Nov |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Mechanical Engineering
- Electrical and Electronic Engineering