Description
Determining the mechanisms responsible for the distribution of genetic diversity in natural populations has occupied a central role in molecular evolution. Our study was motivated by the unprecedented observation that a widespread Eurasian flycatcher, Ficedula albicilla, exhibited no variation at the mitochondrial DNA (mtDNA) ND2 gene in 75 individuals sampled over a 5000-km distance. In contrast, its sister species, F. parva, had low but considerably higher levels of mtDNA variation. We assessed whether natural selection or demographic factors could explain the absence of mtDNA variation in F. albicilla. Eighteen nuclear genes were sequenced to estimate the two species’ phylogeographic histories, and for comparison to the mtDNA data. Multilocus coalescence analyses suggested that F. albicilla experienced a population expansion perhaps following a population bottleneck. Simulations based on this demographic history, however, did not replicate the extremely low level of mtDNA variation. Historical range changes based on ecological niche models also failed to explain the observed mtDNA patterns. Neutrality tests (DHEW and ML-HKA) suggested a non-neutral pattern in the mtDNA of F. albicilla. We found a transmembrane-skewed distribution of nonsynonymous substitutions between the two species, three of which caused functional change; the results implied that positive selection could have targeted mtDNA. Several lines of evidence support selection rather than demographic history as the main force influencing the patterns of mtDNA variation. Despite the influence of natural selection, many of the phylogeographic inferences derived from mtDNA were robust, including species limits and a high level of gene flow among populations within species.,Data deposit to DRYAD (Ficedula),
Date made available | 2014 Jan 1 |
---|---|
Publisher | Unknown Publisher |