Additional file 1: Table S1. of Diversifying selection of the anthocyanin biosynthetic downstream gene UFGT accelerates floral diversity of island Scutellaria species

  • Jian Gao (Contributor)
  • Pei-Chun Liao (Contributor)
  • Chia Lung Huang (Contributor)
  • Bing Hong Huang (Contributor)
  • Yi Wen Chen (Contributor)



List of Scutellaria species used in this study. Table S2. Likelihood statistics results of ancestral area reconstruction models implemented in BioGeoBEARS. Table S3. Paired t test of ω ratios calculated from relative rate test implemented in HyPhy. Table S4. McDonald and Kreitman test of CHS and UFGT among Taiwanese skullcap sister species pairs. Table S5. HKA test results of CHS and UFGT between Taiwanense and non-Taiwanese skullcap species. Table S6. AMOVA analysis of CHS and UFGT between Taiwanese and non-Taiwanese species. Figure S1. Mapping of the flower colours on a skullcaps phylogeny. Probability of ancestral state was mapped on the node. Colour in boxes corresponded to different flower colours. Blue: blue colours; Red: red colours; Yellow: yellow colours; Grey: white colours. Figure S2. The dN/dS (ω) vs. dS plots show a comparison of the ω distribution and the relative divergent times between Taiwanese species (T/T), non-Taiwanese and Taiwanese species (nT/T), and between non-Taiwanese species (nT/nT) for CHS (A–C) and UFGT (D–F). Horizontal lines in D–F indicate the boundary for ω = 1. Figure S3. Result of mixed effects model of evolution (MEME) analysis for the naringenin-chalcone synthase (CHS) gene. Figure S4. Result of mixed effects model of evolution (MEME) analysis for the UDP-glucose:flavonol 3-O-D-glucosyltransferase (UFGT) gene. (DOCX 1612 kb)
Date made available2016 Sept 17
PublisherUnknown Publisher

Cite this